Contribution of sublinear and supralinear dendritic integration to neuronal computations
- PMID: 25852470
- PMCID: PMC4371705
- DOI: 10.3389/fncel.2015.00067
Contribution of sublinear and supralinear dendritic integration to neuronal computations
Abstract
Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem.
Keywords: Boolean analysis; binary neruons; dendrites; input-output transformation; neural computation; nonlinear transformations; uncaging; votlage activated channels.
Figures





Similar articles
-
Demonstration that sublinear dendrites enable linearly non-separable computations.Sci Rep. 2024 Aug 6;14(1):18226. doi: 10.1038/s41598-024-65866-9. Sci Rep. 2024. PMID: 39107382 Free PMC article.
-
Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.Neuron. 2016 Aug 17;91(4):837-850. doi: 10.1016/j.neuron.2016.07.029. Neuron. 2016. PMID: 27537486
-
Supralinear dendritic integration in murine dendrite-targeting interneurons.Elife. 2025 Jan 31;13:RP100268. doi: 10.7554/eLife.100268. Elife. 2025. PMID: 39887034 Free PMC article.
-
Synaptic integration in cortical inhibitory neuron dendrites.Neuroscience. 2018 Jan 1;368:115-131. doi: 10.1016/j.neuroscience.2017.06.065. Epub 2017 Jul 27. Neuroscience. 2018. PMID: 28756117 Review.
-
Input transformation by dendritic spines of pyramidal neurons.Front Neuroanat. 2014 Dec 2;8:141. doi: 10.3389/fnana.2014.00141. eCollection 2014. Front Neuroanat. 2014. PMID: 25520626 Free PMC article. Review.
Cited by
-
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex.J Neurosci. 2023 Jan 4;43(1):14-27. doi: 10.1523/JNEUROSCI.1661-21.2022. Epub 2022 Nov 16. J Neurosci. 2023. PMID: 36384682 Free PMC article.
-
Electric field effects on neuronal input-output relationship by regulating NMDA spikes.Cogn Neurodyn. 2024 Feb;18(1):199-215. doi: 10.1007/s11571-022-09922-y. Epub 2023 Jan 4. Cogn Neurodyn. 2024. PMID: 38406200 Free PMC article.
-
Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3.Nat Commun. 2025 Jan 28;16(1):1119. doi: 10.1038/s41467-025-56289-9. Nat Commun. 2025. PMID: 39875374 Free PMC article.
-
Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators.Nat Commun. 2019 Aug 14;10(1):3664. doi: 10.1038/s41467-019-11537-7. Nat Commun. 2019. PMID: 31413258 Free PMC article.
-
A multilayer-multiplexer network processing scheme based on the dendritic integration in a single neuron.AIMS Neurosci. 2022 Feb 28;9(1):76-113. doi: 10.3934/Neuroscience.2022006. eCollection 2022. AIMS Neurosci. 2022. PMID: 35434280 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources