Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 17;26(6):1054-60.
doi: 10.1021/acs.bioconjchem.5b00169. Epub 2015 May 12.

(68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma

Affiliations

(68)Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma

Di Fan et al. Bioconjug Chem. .

Abstract

β-Emitters can produce Cerenkov radiation that is detectable by Cerenkov luminescence imaging (CLI), allowing the combination of PET and CLI with one radiotracer for both tumor diagnosis and visual guidance during surgery. Recently, the clinical feasibility of CLI with the established therapeutic reagent Na(131)I and the PET tracer (18)F-FDG was demonstrated. (68)Ga possesses a higher Cerenkov light output than (18)F and (131)I, which would result in higher sensitivity for CLI and improve the outcome of CLI in clinical applications. However, the research on (68)Ga-based tumor-specific tracers for CLI is limited. In this study, we examined the use of (68)Ga-radiolabeled DOTA-3PRGD2 ((68)Ga-3PRGD2) for dual PET and CLI of orthotopic U87MG human glioblastoma. For this purpose, the Cerenkov efficiencies of (68)Ga and (18)F were measured with the IVIS Spectrum system (PerkinElmer, USA). The CLI signal intensity of (68)Ga was 15 times stronger than that of (18)F. PET and CLI of (68)Ga-3PRGD2 were performed in U87MG human glioblastoma xenografts. Both PET and CLI revealed a remarkable accumulation of (68)Ga-3PRGD2 in the U87MG human glioblastoma xenografts at 1 h p.i. with an extremely low background in the brain when compared with (18)F-FDG. Furthermore, (68)Ga-3PRGD2 was used for dual PET and CLI of orthotopic human glioblastoma. The orthotopic human glioblastoma was clearly visualized by both imaging modalities. In addition, the biodistribution of (68)Ga-3PRGD2 was assessed in normal mice to estimate the radiation dosimetry. The whole-body effective dose is 20.1 ± 3.3 μSv/MBq, which is equal to 3.7 mSv per whole-body PET scan with a 5 mCi injection dose. Thus, (68)Ga-3PRGD2 involves less radiation exposure in patients when compared with (18)F-FDG (7.0 mSv). The use of (68)Ga-3PRGD2 in dual PET and CLI shows great promise for tumor diagnosis and image-guided surgery.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources