Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography
- PMID: 25856384
- PMCID: PMC4427901
- DOI: 10.1088/0031-9155/60/9/3441
Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography
Abstract
Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.
Figures








Similar articles
-
Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.Ultrasonics. 2015 Dec;63:7-15. doi: 10.1016/j.ultras.2015.06.009. Epub 2015 Jun 15. Ultrasonics. 2015. PMID: 26112426
-
A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging.IEEE Trans Ultrason Ferroelectr Freq Control. 2014 May;61(5):870-80. doi: 10.1109/TUFFC.2014.6805699. IEEE Trans Ultrason Ferroelectr Freq Control. 2014. PMID: 24801226 Free PMC article.
-
Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging.IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1668-87. doi: 10.1109/TUFFC.2014.006466. IEEE Trans Ultrason Ferroelectr Freq Control. 2014. PMID: 25265176 Free PMC article.
-
High-frequency intracoronary ultrasound imaging.Semin Interv Cardiol. 1997 Mar;2(1):33-41. Semin Interv Cardiol. 1997. PMID: 9546982 Review.
-
Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging.Sensors (Basel). 2021 May 19;21(10):3540. doi: 10.3390/s21103540. Sensors (Basel). 2021. PMID: 34069613 Free PMC article. Review.
Cited by
-
A Backing-Layer-Shared Miniature Dual-Frequency Ultrasound Probe for Intravascular Ultrasound Imaging: In Vitro and Ex Vivo Validations.Biosensors (Basel). 2023 Nov 6;13(11):971. doi: 10.3390/bios13110971. Biosensors (Basel). 2023. PMID: 37998146 Free PMC article.
-
Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy.Sci Rep. 2018 Sep 17;8(1):13918. doi: 10.1038/s41598-018-32235-2. Sci Rep. 2018. PMID: 30224779 Free PMC article.
-
Ex Vivo Porcine Arterial and Chorioallantoic Membrane Acoustic Angiography Using Dual-Frequency Intravascular Ultrasound Probes.Ultrasound Med Biol. 2016 Sep;42(9):2294-307. doi: 10.1016/j.ultrasmedbio.2016.04.008. Epub 2016 May 31. Ultrasound Med Biol. 2016. PMID: 27260246 Free PMC article.
-
All-Optical Rotational Ultrasound Imaging.Sci Rep. 2019 Apr 3;9(1):5576. doi: 10.1038/s41598-019-41970-z. Sci Rep. 2019. PMID: 30944379 Free PMC article.
-
Millisecond-level transient heating and temperature monitoring technique for ultrasound-induced thermal strain imaging.Theranostics. 2025 Jan 1;15(3):815-827. doi: 10.7150/thno.95997. eCollection 2025. Theranostics. 2025. PMID: 39776794 Free PMC article.
References
-
- Azuma T, Ogihara M, Kubota J, Sasaki A, Umemura Si, Furuhata H. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:1211–24. - PubMed
-
- Bouakaz A, Frigstad S, Ten Cate FJ, de Jong N. Improved contrast to tissue ratio at higher harmonics. Ultrasonics. 2002;40:575–8. - PubMed
-
- Bouakaz A, Krenning BJ, Vletter WB, Cate FJT, Jong ND. Contrast superharmonic imaging: A feasibility study. Ultrasound Med Biol. 2003;29:547–53. - PubMed
-
- Bouakaz A, ten Cate F, de Jong N. A new ultrasonic transducer for improved contrast nonlinear imaging. Phys Med Biol. 2004;49:3515. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous