Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015;56(10):2768-78.
doi: 10.3109/10428194.2015.1037762. Epub 2015 May 18.

Novel therapies for myelofibrosis

Affiliations
Review

Novel therapies for myelofibrosis

Brady L Stein et al. Leuk Lymphoma. 2015.

Abstract

Myelofibrosis (MF), including primary, post-essential thrombocythemia and post-polycythemia vera MF, associates with a reduced quality of life and shortened life expectancy. Dysregulation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is prominent, even in the absence of the JAK2(V617F) mutation. Therefore, all symptomatic MF patients may potentially derive benefit from JAK inhibitors. Despite the efficacy of JAK inhibitors in controlling signs and symptoms of MF, they do not eradicate the disease. Therefore, JAK inhibitors are currently being tested in combination with other novel therapies, a strategy which may be more effective in reducing disease burden, either by overcoming JAK inhibitor resistance or targeting additional mechanisms of pathogenesis. Additional targets include modulators of epigenetic regulation, pathways that work downstream from JAK/STAT (i.e. mammalian target of rapamycin/AKT/phosphoinositide 3-kinase) heat shock protein 90, hedgehog signaling, pro-fibrotic factors, abnormal megakaryocytes and telomerase. In this review, we discuss novel MF therapeutic strategies.

Keywords: Molecular genetics; myeloproliferative disorders; signaling therapies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2

References

    1. Mesa RA, Kiladjian JJ, Verstovsek S, Al-Ali HK, Gotlib J, Gisslinger H, et al. Comparison of placebo and best available therapy for the treatment of myelofibrosis in the phase 3 COMFORT studies. Haematologica. 2014 Feb;99(2):292–8. - PMC - PubMed
    1. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005 Apr 28;434(7037):1144–8. - PubMed
    1. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005 Apr 28;352(17):1779–90. - PubMed
    1. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005 Mar 19–25;365(9464):1054–61. - PubMed
    1. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005 Apr;7(4):387–97. - PubMed

MeSH terms