Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 1;25(21):4956-4960.
doi: 10.1016/j.bmcl.2015.03.041. Epub 2015 Mar 23.

Structure-activity relationship studies of the lipophilic tail region of sphingosine kinase 2 inhibitors

Affiliations

Structure-activity relationship studies of the lipophilic tail region of sphingosine kinase 2 inhibitors

Molly D Congdon et al. Bioorg Med Chem Lett. .

Abstract

Sphingosine-1-phosphate (S1P) is a ubiquitous, endogenous small molecule that is synthesized by two isoforms of sphingosine kinase (SphK1 and 2). Intervention of the S1P signaling pathway has attracted significant attention because alteration of S1P levels is linked to several disease states including cancer, fibrosis, and sickle cell disease. While intense investigations have focused on developing SphK1 inhibitors, only a limited number of SphK2-selective agents have been reported. Herein, we report our investigations on the structure-activity relationship studies of the lipophilic tail region of SLR080811, a SphK2-selective inhibitor. Our studies demonstrate that the internal phenyl ring is a key structural feature that is essential in the SLR080811 scaffold. Further, we show the dependence of SphK2 activity and selectivity on alkyl tail length, suggesting a larger lipid binding pocket in SphK2 compared to SphK1.

Keywords: S1P; SphK1; SphK2; Sphingosine kinase; Sphingosine-1-phosphate.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structure of sphingosine kinase 2 inhibitors.
Figure 2
Figure 2
Pharmacophore of guanidine-based inhibitors.
Scheme 1
Scheme 1
a.) Alkyne (2 equiv.), TEA (5 equiv.), DMF, PdCl2(PPh3)2 (0.05 equiv.), CuI (0.03 equiv.), 80 °C, 18 h, (72–93%); b.) i. Alkene, 0.5 M 9-BBN, in THF, rt, 12 h; ii. Pd(dppf)Cl2, Cs2CO3, DMF, 70 °C, 18 h, (75–93%); c.) NH2OH·HCl (3 equiv.), TEA (3 equiv.), EtOH, 80 °C, 6 h, (43–95%); d.) Boc-L-Proline (1.4 equiv.), DIEA (1.4 equiv.), HCTU (1.8 equiv.), DMF, 110 °C, 18 h, (25–65%); e.) DME (20 vol/wt), 4-toluenesulfonyl hydrazide (10 equiv.), TEA (5 equiv.), reflux, (67–71%); f.) HCl/MeOH, (35–100%); g.) DIEA (3 equiv.), N,N'-Di-Boc-1H-pyrazole-1-carboxamidine (1.05 equiv.), CH3CN, rt, 3 days, (27–76%).
Scheme 2
Scheme 2
a.) Boc-L-Azetidine (1.4 equiv.), DIEA (1.4 equiv.), HCTU (1.8 equiv.), DMF, 110 °C, 18 h, (63%); b.) Alkyne (2 equiv.), TEA (5 equiv.), DMF, PdCl2(PPh3)2 (0.05 equiv.), CuI (0.03 equiv.), 80 °C, 18 h, (33–57%); c.) Phenylboronic acid (1.3 equiv.), Cs2CO3 (equiv.), DMF, PdCl2(dppf) (0.04 equiv.), 80 °C, 18 h, (91%); d.) Amine, Pd(dba)3, Cs2CO3, PtBu3, toluene, 120 °C, 6 d, (81–83%); e.) DME (20 vol/wt), 4-toluenesulfonyl hydrazide (10 equiv.), TEA (5 equiv.), reflux, (60–71%); f.) HCl/MeOH, (78–96%); g.) DIEA (3 equiv.), N,N'-Di-Boc-1H-pyrazole-1-carboxamidine (1.05 equiv.), CH3CN, rt, 3 days, (43–66%).
Scheme 3
Scheme 3
a.) Piperazine (3 equiv.), Pd2(dba)3 (0.2 equiv.), PtBu3 (0.8 equiv.), Cs2CO3 (1.2 equiv.), toluene, 120 °C, 3 days, (52%); b.) Acid chloride (2.5 equiv.) or benzyl bromide (1 equiv.), TEA (2 equiv.), CH2Cl2, 0 °C—rt, 2 h, (66–88%); c) HCl/MeOH, (76–95%); d) DIEA (3 equiv.), N,N'-Di-Boc-1H-pyrazole-1-carboxamidine (1.05 equiv.), CH3CN, rt, 3 days, (23–74%).
Scheme 4
Scheme 4
a.) NaH, EtOH, 0 °C—rt, (46%); b.) 4-cyanophenylboronic acid, Pd(PPh3)4 (10 mol%), Na2CO3, THF:H2O, (94%); c.) NH2OH·HCl (3 equiv.), TEA (3 equiv.), EtOH, 80 °C, 6 h, (71–93%); d.) Boc-L-Proline (1.4 equiv.), DIEA (1.4 equiv.), HCTU (1.8 equiv.), DMF, 110 °C, 18 h, (46–82%); e.) HCl/MeOH, (33–91%); f.) DIEA (3 equiv.), N,N'-Di-Boc-1H-pyrazole-1-carboxamidine (1.05 equiv.), CH3CN, rt, 3 days, (53–83%); g.) sodium benzenesulfonate (1.5 equiv.), DMF, 60 °C, 2 h, (89%).
Scheme 5
Scheme 5
a.) KCN (2 equiv.), 9:1 EtOH:H2O, 80 °C, 18 h, (20–93%); b.) NH2OH·HCl (3 equiv.), TEA (3 equiv.), EtOH, 80 °C, 12 h, (53–69%); c.) Boc-L-Proline (1.4 equiv.), DIEA (1.4 equiv.), HCTU (1.8 equiv.), DMF, 110 °C, 18 h, (50%); d.) Boc-L-Proline (1.4 equiv.), DIEA (1.4 equiv.), HCTU (1.8 equiv.), CH2Cl2, rt, 4 h, (57–80%); e.) TBAF (1.0 M, 1 equiv.), THF, rt, 1 h, (93–95%); f.) HCl/MeOH, (66–100%); g) DIEA (3 equiv.), N,N'-Di-Boc-1H-pyrazole-1-carboxamidine (1.05 equiv.), CH3CN, rt, 3 days, (51–71%).

References

    1. Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V. Biochim. Biophys. Acta. 2014;1841:745. - PubMed
    1. Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y. Am. J. Cancer Res. 2011;1:460. - PMC - PubMed
    1. Kunkel GT, Maceyka M, Milstien SSS. Nat Rev Drug Discov. 2013;12:688. - PMC - PubMed
    1. Zhang Y, Berka V, Song A, Sun K, Wang W, Zhang W, Ning C, Li C, Zhang Q, Bogdanov M, Alexander DC, Milburn MV, Ahmed MH, Lin H, Idowu M, Zhang J, Kato GJ, Abdulmalik OY, Zhang W, Dowhan W, Kellems RE, Zhang P, Jin J, Safo M, Tsai AL, Juneja HS, Xia Y. J. Clin. Invest. 2014;124:2750. - PMC - PubMed
    1. Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH, Jr, Milstien S, Spiegel S. J. Biol. Chem. 2005;280:37118. - PubMed

Publication types

MeSH terms

LinkOut - more resources