Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 15:450:388-395.
doi: 10.1016/j.jcis.2015.03.041. Epub 2015 Mar 30.

Adherence and interaction of cationic quantum dots on bacterial surfaces

Affiliations

Adherence and interaction of cationic quantum dots on bacterial surfaces

Cheng Yang et al. J Colloid Interface Sci. .

Abstract

Understanding molecular mechanisms of interactions between nanoparticles and bacteria is important and essential to develop nanotechnology for medical and environmental applications. Quantum dots (QDs) are specific nanoparticles with unique optical properties and high photochemical stability. In the present study, direct interactions were observed between cationic QDs and bacteria. Distinct fluorescence quenching patterns were developed when cationic QDs interacted with Gram negative and Gram positive bacteria. The aggregation of QDs on bacterial surface as well as fluorescence quenching depends upon the chemical composition and structure of the bacterial cell envelopes. The presence of lipopolysaccharide is unique to Gram-negative bacterial surface and provides negatively charge areas for absorbing cationic QDs. The effects of lipopolysaccharide were proved on fluorescence quenching of cationic QDs. In contrast to Gram-negative bacteria, the presence of teichoic acids is unique to Gram-positive bacterial cell wall and provides negatively charged sites for cationic QDs along the chain of teichoic-acid molecules, which may protect QDs from aggregation and fluorescence quenching. This study may not only provide insight into behaviors of QDs on bacterial cell surfaces but also open a new avenue for designing and applying QDs as biosensors in microbiology, medicine, and environmental science.

Keywords: Bacterial cell wall; Bacterial surface; Cell membrane; Fluorescence quenching; Gram-negative bacteria; Gram-positive bacteria; Lipopolysaccharides (LPS); Nanoparticles; Quantum dots (QDs); Teichoic-acids.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources