Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2015 May 12;34(10):1287-9.
doi: 10.15252/embj.201591541. Epub 2015 Apr 11.

Gut stem cells, a story of snails, flies and mice

Affiliations
Comment

Gut stem cells, a story of snails, flies and mice

Marc Amoyel. EMBO J. .

Abstract

Intestinal stem cells (ISCs) replenish and regenerate several types of cells in the gut, both during normal homeostasis and in response to various insults such as infections. Although gut structure and complexity vary across phyla, two functional categories of differentiated cell types are always present: absorptive cells and those of the secretory lineage. A series of studies in Drosophila and mouse published in The EMBO Journal, including one in this issue, identifies conserved roles for the Snail family of zinc finger transcription factors in regulating self-renewal and differentiation of ISCs (Korzelius et al, 2014; Loza-Coll et al, 2014; Horvay et al, 2015).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Model of Snai1 action in the mouse gut and of Esg in fly ISCs (A) Snai1 is expressed in CBCs and transit amplifying cells. It regulates CBC survival and differentiation of transit amplifying cells to the secretory or absorptive lineage. (B) Esg is found in ISCs and EBs in the fly gut, where it acts to repress differentiation genes. Moreover, it may activate self-renewal genes in ISCs. Finally, amun is a target of Esg in EBs, where it affects N signalling to determine EC versus EE fate.

Comment on

References

    1. Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K, Delafaille S, Dubois C, Salmon I, Willekens K, Marine JC, Blanpain C. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell. 2015;16:67–79. - PubMed
    1. De Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, Jonkers J, Fuchs E, Berx G. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21:310–320. - PMC - PubMed
    1. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012;148:1015–1028. - PMC - PubMed
    1. Horvay K, Casagranda F, Gany A, Hime GR, Abud HE. Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev. 2011;20:737–745. - PubMed
    1. Horvay K, Jarde T, Casagranda F, Perreau VM, Haigh K, Nefzger CM, Akhtar R, Gridley T, Berx G, Haigh JJ, Barker N, Polo JM, Hime GR, Abud HE. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J. 2015;34:1319–1335. - PMC - PubMed

Substances

LinkOut - more resources