Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 18;25(10):1347-53.
doi: 10.1016/j.cub.2015.03.034. Epub 2015 Apr 9.

A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms

Affiliations

A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms

Bernhard Egger et al. Curr Biol. .

Abstract

The interrelationships of the flatworms (phylum Platyhelminthes) are poorly resolved despite decades of morphological and molecular phylogenetic studies. The earliest-branching clades (Catenulida, Macrostomorpha, and Polycladida) share spiral cleavage and entolecithal eggs with other lophotrochozoans. Lecithoepitheliata have primitive spiral cleavage but derived ectolecithal eggs. Other orders (Rhabdocoela, Proseriata, Tricladida and relatives, and Bothrioplanida) all have derived ectolecithal eggs but have uncertain affinities to one another. The orders of parasitic Neodermata emerge from an uncertain position from within these ectolecithal classes. To tackle these problems, we have sequenced transcriptomes from 18 flatworms and 5 other metazoan groups. The addition of published data produces an alignment of >107,000 amino acids with less than 28% missing data from 27 flatworm taxa in 11 orders covering all major clades. Our phylogenetic analyses show that Platyhelminthes consist of the two clades Catenulida and Rhabditophora. Within Rhabditophora, we show the earliest-emerging branch is Macrostomorpha, not Polycladida. We show Lecithoepitheliata are not members of Neoophora but are sister group of Polycladida, implying independent origins of the ectolecithal eggs found in Lecithoepitheliata and Neoophora. We resolve Rhabdocoela as the most basally branching euneoophoran taxon. Tricladida, Bothrioplanida, and Neodermata constitute a group that appears to have lost both spiral cleavage and centrosomes. We identify Bothrioplanida as the long-sought closest free-living sister group of the parasitic Neodermata. Among parasitic orders, we show that Cestoda are closer to Trematoda than to Monogenea, rejecting the concept of the Cercomeromorpha. Our results have important implications for understanding the evolution of this major phylum.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogeny Produced Using PhyloBayes with the Site-Heterogeneous CAT+GTR+G4 Model on the Full 107,659 Amino Acid Alignment There is support for a sister group relationship between Gastrotricha and Platyhelminthes, which are members of an unresolved clade including mollusks, annelids, and nemerteans, contrary to the concept of the Platyzoa. Platyhelminthes are monophyletic. Macrostomorpha is the earliest-branching rhabditophoran clade. Lecithopepitheliata and Polycladida are sister groups. Rhabdocoels are the sister clade to all other neoophoran orders, including proseriates, but are separated from other Euneoophora by a very short internode. Bothrioplana is the closest free-living relative of the parasitic Neodermata. Values at nodes indicate posterior probabilities. Scale bar indicates number of substitutions per site. MaxDiff = 1.0; MeanDiff = 0.00934579. Lophotrochozoan groups in Figures 1, 2, and 3 are indicated by colored labels.
Figure 2
Figure 2
Jackknife Analysis of 100 Datasets of 20,000 Amino Acids Each, Produced Using the PhyloBayes CAT+GTR+G4 Model Values at nodes indicate proportion of replicates in which the node is found (1 corresponds to 100% jackknife). The topology is largely the same as the full analysis shown in Figure 1, and most clades receive high support. Relatively low support for the sister group relationship of rhabdocoels and other euneoophorans is observed. There is no clear support for or against Platyzoa, indicated by the polytomy at the base of the Lophotrochozoa. Scale bar indicates number of substitutions per site.
Figure 3
Figure 3
Phylogenetic Signal Dissection: Gene Rate Ranking to Look for Possible LBA Artifacts The trees shown were produced using PhyloBayes’ CAT+GTR+G4 model on four equal-sized datasets (quartiles Q1 to Q4) containing genes evolving at increasingly rapid rates (Figure S3). Q1 is slowest and expected to be least susceptible to long-branch attraction (LBA); Q4 is fastest evolving and, a priori, most susceptible to LBA. The trees of the slowest two quartiles are identical in all important respects to the topology found using the full dataset. In the faster-evolving quartiles, the positions of the long-branched rhabdocoels and short-branched proseriates are reversed. In Q4, the short-branched Bothrioplana groups with short-branched Proseriata and the long-branched Rhabdocoela and Neodermata are grouped together. In the slower-evolving Q1–Q3, no support for Platyzoa is observed. In Q4, support switches to Platyzoa (Rotifera, Gastrotricha, and Platyhelminthes), presumably due to LBA effects. Relative substitution rates: Q1 = 1.14, Q2 = 1.33, Q3 = 1.42, Q4 = 1.54. Percent missing data: Q1 = 27%, Q2 = 26%, Q3 = 28%, Q4 = 29%. MaxDiff/MeanDiff: Q1 = 1.0/0.0192412, Q2 = 0.928747/0.02347, Q3 = 0.425926/0.00683628, Q4 = 0.647856/0.00764029. Scale bars indicate number of substitutions per site.
Figure 4
Figure 4
Consensus Tree of Relationships of Eleven Platyhelminth Orders with Important Morphological and Genetic Characters Mapped The less-reliably resolved branches involve the Rhabdocoela and the Proseriata, although our results suggest that basally branching Rhabdocoela (indicated by dashed line) is likely the correct solution. Developmental features, such as egg and cleavage type, planktotrophic larvae, and gene presence/absence patterns are indicated to the right of the tree. If polyclad larvae are homologous with the trochophores of annelids and mollusks, primary larval stages must have been lost in Catenulida, Macrostomorpha, Lecithoepitheliata, and the Euneoophora. Entolecithal eggs as found in Catenulida, Macrostomorpha, and Polycladida are an ancestral character. Ectolecithal eggs are independently present in Lecithoepitheliata and Euneoophora. The parahox gene Cdx is undetectable in all Euneoophora. Spiral cleavage has been lost in Acentrosomata, and the three centrosome-associated genes shown are undetectable in this group.

References

    1. Ehlers U. First Edition. Gustav Fischer Verlag; 1985. Das Phylogenetische System der Plathelminthes.
    1. Laumer C.E., Giribet G. Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes. Biol. J. Linn. Soc. Lond. 2014;111:570–588.
    1. Lartillot N., Lepage T., Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. - PubMed
    1. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. - PubMed
    1. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. - PMC - PubMed

Publication types

LinkOut - more resources