Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jul;22(7):512-8.
doi: 10.1002/jhbp.245. Epub 2015 Apr 13.

Recent advancement of molecular mechanisms of liver fibrosis

Affiliations
Review

Recent advancement of molecular mechanisms of liver fibrosis

Ekihiro Seki et al. J Hepatobiliary Pancreat Sci. 2015 Jul.

Abstract

Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis.

Keywords: Alcoholic liver disease; Angiogenesis; Autophagy; Hepatic stellate cells; IL-17; IL-22; IL-33; Liver cirrhosis; Reversal; Senescence.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest None declared.

Figures

Fig. 1
Fig. 1
Activation and regression of hepatic stellate cells. Quiescent hepatic stellate cells (HSCs) store Vitamin A containing lipid droplets and lose Vitamin A when the cells are activated. Hepatic epithelial injury, such as death of hepatocytes and biliary epithelial cells, induces activation of HSCs directly or through cytokines released from immune cells including Kupffer cells, bone marrow-derived monocytes, Th17 cells, and innate lymphoid cells (ILC). Transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), interleukin-1β (IL-1β), IL-17, and intestine-derived lipopolysaccharide (LPS) promote HSC activation. IL-33 promotes HSC activation through ILC2. Autophagy in HSCs is associated with HSC activation. The activated myofibroblast pool is mainly constituted by activated HSCs, but biliary injury induces differentiation of portal fibroblasts to activated myofibroblasts. However, there is no evidence of epithelial-mesenchymal transition for constituting the myofibroblast pool. After the cessation of causative liver injury, fibrosis starts regression, and activated HSCs induce apoptosis or revert into a quiescent state. Peroxisome proliferator-activated receptor γ (PPARγ) expression in HSCs is associated with HSC reversal. Some activated HSCs become senescent, resulting in loss of profibrogenic property in which p53 plays a role. Moreover, angiogenesis contributes to both fibrosis development and regression

References

    1. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–456. - PubMed
    1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218. - PMC - PubMed
    1. Brenner DA. Reversibility of liver fibrosis. Gastroenterology & Hepatology. 2013;9:737–739. - PMC - PubMed
    1. Seki E, Schwabe RF. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways. Hepatology. 2015;61:1066–1079. - PMC - PubMed
    1. Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A. 2014;111:E3297–E3305. - PMC - PubMed

Publication types