Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Spring;17(1):1-6.
doi: 10.22074/cellj.2015.506. Epub 2015 Apr 8.

Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology

Review

Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology

Sophie Rousseaux et al. Cell J. 2015 Spring.

Abstract

Histone acetylation, one of the first and best studied histone post-translational modifications (PTMs), as well as the factors involved in its deposition (writers), binding (readers) and removal (erasers), have been shown to act at the heart of regulatory circuits controlling essential cellular functions. The identification of a variety of competing histone lysine-modifying acyl groups including propionyl, butyryl, 2-hydroxyisobutyryl, crotonyl, malonyl, succinyl and glutaryl, raises numerous questions on their functional significance, the molecular systems that manage their establishment, removal and interplay with the well-known acetylation-based mechanisms. Detailed and large-scale investigations of two of these new histone PTMs, crotonylation and 2-hydroxyisobutyrylation, along with histone acetylation, in the context of male genome programming, where stage-specific gene expression programs are switched on and off in turn, have shed light on their functional contribution to the epigenome for the first time. These initial investigations fired many additional questions, which remain to be explored. This review surveys the major results taken from these two new histone acylations and discusses the new biology that is emerging based on the diversity of histone lysine acylations.

Keywords: Bromodomain; HAT; HDAC; Spermatogenesis; X Inactivation.

PubMed Disclaimer

Figures

Fig.1
Fig.1
Molecular systems orbiting around histone acetylation have been the centre of comprehensive investigations leading to the identification and functional characterization of the three major classes of actors involved in generating [acetyltransferases ( HATs )], reading [bromodomains ( BRDs )] and erasing [deacetylases ( HDACs )] signalling to chromatin based on acetylation. In contrast, our knowledge of the molecular machinery managing signalling through histone acylations other than acetylation is very poor and only a few enzymes involved in their establishment and removal have been identified so far. All the acyl group donors are generated through cell metabolism and hence a critical question to address is how cell metabolism drives all these modifications and how it imposes a specific choice on the use of acyl group. Ac; Acetylation, Pr; Propionylation, Bu; Butyrylation, Hib; 2-hydroxyisobutyrylation, Cr; Crotonylation, Su; Succinylation, Glu; Glutarylation and CBP/p300; CREB-binding protein/EP300.

Similar articles

Cited by

References

    1. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76:75–100. - PubMed
    1. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–691. - PubMed
    1. Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 2007;6(5):812–819. - PMC - PubMed
    1. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–1028. - PMC - PubMed
    1. Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol. 2014;10(5):365–370. - PubMed

LinkOut - more resources