Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun;9(2):174-81.
doi: 10.1097/SPC.0000000000000133.

Host-microbe cross talk in cancer therapy

Affiliations
Review

Host-microbe cross talk in cancer therapy

Barbara Vanhoecke et al. Curr Opin Support Palliat Care. 2015 Jun.

Abstract

Purpose of review: Microbiota secrete a multitude of factors that either confer virulence or promote colonization because they are continuously challenged by host immune responses. The dynamic interplay between the host's immune response and microbiota eventually determines the outcome for the host: health or disease. Toll-like receptors (TLRs) play a key role in this interplay as they can recognize both microbial and host-derived ligands on the basis of the context in which recognition occurs.

Recent findings: Evidence is accumulating that conventional cancer therapies alter interactions and cross talks between the host and microbiota. This has been shown for intestinal mucositis, a common side-effect of various cancer therapies. Advances have been made in the development of new and less toxic cancer strategies. One promising field is immunotherapy on the basis of TLR activation through recognition of microbial-associated molecular patterns.

Summary: Evidence is emerging, indicating that existing cancer therapies have implications on the composition and functionality of the host-microbiota environment. This may favor the colonization of pathogens and build up the overall toxicity of the drug. Exploitation of the host-microbiota cross talks mediated by TLRs is an emerging and promising field in the search for new, less toxic anticancer strategies.

PubMed Disclaimer

Publication types

MeSH terms

Substances