The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle
- PMID: 25873247
- PMCID: PMC4397836
- DOI: 10.1038/srep09578
The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle
Abstract
The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging -14.7 to -23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn(2+) ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane.
Figures









Similar articles
-
Antibacterial, Structural and Optical Characterization of Mechano-Chemically Prepared ZnO Nanoparticles.PLoS One. 2016 May 16;11(5):e0154704. doi: 10.1371/journal.pone.0154704. eCollection 2016. PLoS One. 2016. PMID: 27183165 Free PMC article.
-
Activity evaluation of pure and doped zinc oxide nanoparticles against bacterial pathogens and Saccharomyces cerevisiae.J Appl Microbiol. 2019 Nov;127(5):1391-1402. doi: 10.1111/jam.14407. Epub 2019 Sep 2. J Appl Microbiol. 2019. PMID: 31386785
-
Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin.Free Radic Biol Med. 2016 Dec;101:434-445. doi: 10.1016/j.freeradbiomed.2016.11.016. Epub 2016 Nov 11. Free Radic Biol Med. 2016. PMID: 27845185
-
Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.Chem Biol Interact. 2018 Apr 25;286:60-70. doi: 10.1016/j.cbi.2018.03.008. Epub 2018 Mar 15. Chem Biol Interact. 2018. PMID: 29551637 Review.
-
Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.Adv Colloid Interface Sci. 2017 Nov;249:37-52. doi: 10.1016/j.cis.2017.07.033. Epub 2017 Aug 26. Adv Colloid Interface Sci. 2017. PMID: 28923702 Review.
Cited by
-
Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses.Sci Rep. 2021 Apr 22;11(1):8692. doi: 10.1038/s41598-021-87254-3. Sci Rep. 2021. PMID: 33888738 Free PMC article.
-
Nanotheranostics and its role in diagnosis, treatment and prevention of COVID-19.Front Mater Sci. 2022;16(2):220611. doi: 10.1007/s11706-022-0611-y. Epub 2022 Aug 3. Front Mater Sci. 2022. PMID: 35966717 Free PMC article. Review.
-
New Insights into the Cellular Toxicity of Carbon Quantum Dots to Escherichia coli.Antioxidants (Basel). 2022 Dec 16;11(12):2475. doi: 10.3390/antiox11122475. Antioxidants (Basel). 2022. PMID: 36552683 Free PMC article.
-
Improving the biocompatibility and antibacterial efficacy of silver nanoparticles functionalized with (LLRR)3 antimicrobial peptide.World J Microbiol Biotechnol. 2023 Nov 4;40(1):1. doi: 10.1007/s11274-023-03792-0. World J Microbiol Biotechnol. 2023. PMID: 37923918
-
Responses to Ecopollutants and Pathogenization Risks of Saprotrophic Rhodococcus Species.Pathogens. 2021 Aug 2;10(8):974. doi: 10.3390/pathogens10080974. Pathogens. 2021. PMID: 34451438 Free PMC article. Review.
References
-
- Nel A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009). - PubMed
-
- Dewan S. et al. Structure of water at charged interfaces: a molecular dynamics study. Langmuir 30, 8056–8065 (2014). - PubMed
-
- Monopoli M. P., berg C., Salvati A. & Dawson K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012). - PubMed
-
- Elsaesser A. & Howard C. V. Toxicology of nanoparticles. Adv. Drug Del. Rev. 64, 129–137 (2012). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases