Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015;87(10):5372-9.
doi: 10.1021/acs.analchem.5b00680. Epub 2015 Apr 30.

Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates

Affiliations

Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates

Jingjing He et al. Anal Chem. 2015.

Abstract

Elucidation of the mechanism of action for drug candidates is fundamental to drug development, and it is strongly facilitated by metabolomics. Herein, we developed an imaging metabolomics method based on air-flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) under ambient conditions. This method was subsequently applied to simultaneously profile a novel anti-insomnia drug candidate, N(6)-(4-hydroxybenzyl)-adenosine (NHBA), and various endogenous metabolites in rat whole-body tissue sections after the administration of NHBA. The principal component analysis (PCA) represented by an intuitive color-coding scheme based on hyperspectral imaging revealed in situ molecular profiling alterations in response to stimulation of NHBA, which are in a very low intensity and hidden in massive interferential peaks. We found that the abundance of six endogenous metabolites changed after drug administration. The spatiotemporal distribution indicated that five altered molecules—including neurotransmitter γ-aminobutyric acid, neurotransmitter precursors choline and glycerophosphocholine, energy metabolism-related molecules adenosine (an endogenous sleep factor), and creatine—are closely associated with insomnia or other neurological disorders. These findings not only provide insights into a deep understanding on the mechanism of action of NHBA, but also demonstrate that the AFADESI-MSI-based imaging metabolomics is a powerful technique to investigate the molecular mechanism of drug action, especially for drug candidates with multitarget or undefined target in the preclinical study stage.

PubMed Disclaimer

Publication types

LinkOut - more resources