Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 15;10(4):e0122093.
doi: 10.1371/journal.pone.0122093. eCollection 2015.

The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis

Affiliations

The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis

G L Crawford et al. PLoS One. .

Abstract

Macrophage activation is, in part, regulated via hydrolysis of oxidised low density lipoproteins by Lipoprotein-Associated phospholipase A2 (Lp-PLA2), resulting in increased macrophage migration, pro-inflammatory cytokine release and chemokine expression. In uveitis, tissue damage is mediated as a result of macrophage activation; hence inhibition of Lp-PLA2 may limit macrophage activation and protect the tissue. Utilising Lp-PLA2 gene-deficient (KO) mice and a pharmacological inhibitor of Lp-PLA2 (SB-435495) we aimed to determine the effect of Lp-PLA2 suppression in mediating retinal protection in a model of autoimmune retinal inflammation, experimental autoimmune uveoretinitis (EAU). Following immunisation with RBP-3 (IRBP) 1-20 or 161-180 peptides, clinical disease was monitored and severity assessed, infiltrating leukocytes were enumerated by flow cytometry and tissue destruction quantified by histology. Despite ablation of Lp-PLA2 enzyme activity in Lp-PLA2 KO mice or wild-type mice treated with SB-435495, the number of infiltrating CD45+ cells in the retina was equivalent to control EAU animals, and there was no reduction in disease severity. Thus, despite the reported beneficial effects of therapeutic Lp-PLA2 depletion in a variety of vascular inflammatory conditions, we were unable to attenuate disease, show delayed disease onset or prevent progression of EAU in Lp-PLA2 KO mice. Although EAU exhibits inflammatory vasculopathy there is no overt defect in lipid metabolism and given the lack of effect following Lp-PLA2 suppression, these data support the hypothesis that sub-acute autoimmune inflammatory disease progresses independently of Lp-PLA2 activity.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: PA, DG and MB are employees of GlaxoSmithKline, whose company partly funded this study. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Quantification of Lp-PLA2 enzyme activity and gene expression in murine plasmas and BMDM.
A) Enzyme analysis of Lp-PLA2 activity from murine cardiac blood samples (n = 15–17) **** p<0.001. B) RT-qPCR quantification of BMDM Pla2g7 expression (n = 3). Lp-PLA2 WT, HET and KO BMMO were stimulated with LPS or media only for 2 or 4 hours, and gene expression analysed. Pla2g7 mRNA expression normalized by GAPDH. * p<0.05 ** p<0.01 ***p<0.005
Fig 2
Fig 2. Effect of Lp-PLA2 depletion on macrophage activation and phenotype on BMDM IL-6 protein expression.
Supernatants from BMDM cultured for 24 hours with SB-435495 treated oxLDL plus 1ng/ml LPS or media control were used to quantify IL-6 protein expression (n = 3). A) SB-435495 was not able to significantly alter IL-6 expression in LPS treated BMDM. IL-6 was undetected in media only controls. BMDM derived from Lp-PLA2 WT, HET and KO mice were cultured with a titration of LPS. Supernatants were collected at 24 hours and used to quantify IL-6 protein expression by ELISA. B) There was no significant difference in IL-6 expression between Lp-PLA2 WT, HET or KO BMDM.
Fig 3
Fig 3. Effect of Lp-PLA2 enzyme ablation on macrophage activation markers as an indicator of macrophage activation status.
Expression of IL-1β, IL-10 and Arginase-1 in Lp-PLA2 WT, HET and KO mice by RT-qPCR. Data from BMDM, following 2 or 4 hour stimulation with LPS (1ng/ml) or media control A) IL-1β (n = 3–4) B) IL-10(n = 3) C) Arginase-1 (n = 3–4). D) A nitrite assay performed as described, using supernatants of BMDM from Lp-PLA2 WT, HET and KO mice cultured in presence of LPS/IFNγ for 24 hours, showed no significant difference between genotypes (n = 9 from 5 mice). E) Data collected from nitrite assays using supernatants of BMDM treated with either LPS or IFNγ plus SB-435495 (1μM or 0.1μM) showed no significant difference between genotypes (n = 3) ****p<0.001
Fig 4
Fig 4. Flow cytometric analysis of BMDM phenotype from cells cultured for 24 hours in the presence of a panel of cytokines.
Geometric mean fluorescence intensity values for A) intracellular CD68 expression (n = 4), B) cell surface MHCII expression (n = 3) and C) cell surface CD40 expression (n = 5) * p<0.05 ** p<0.01 ***p<0.005
Fig 5
Fig 5. Quantification of retinal cellular infiltrate and onset of clinical disease in a murine model of EAU; effective of SB-435454.
A) Flow cytometry data showing CD45+, CD11b+, CD4+ and CD8+ cellular infiltrate in retinal digests from animals at day 14 post immunisation, treated twice daily with either SB-435495 or controls (n = 9–10 eyes). B) Histological staining scores from 12μm ocular sections taken from eyes enucleated at day 14 post immunisation, stained for CD45+ (DAB/haematoxylin) (n = 9–10 eyes). C) TEFI clinical score, day 13 post immunisation, (average scores provided by two independent assessors from two identical repeat experiments. n = 18–20).
Fig 6
Fig 6. Quantification of retinal cellular infiltrate at day 26 post immunisation in a C57BL/6 murine model of EAU carrying Lp-PLA2 WT, heterozygous and homozygous gene-deletion genotypes.
Flow cytometry data showing CD45+, CD11b+, CD4+ and CD8+ cellular infiltrate in retinal digests from Lp-PLA2 KO, HET, WT animals with EAU at day 26 post immunisation. (n = 14–15 eyes).
Fig 7
Fig 7. Ocular oxLDL in naive and uveitic mice.
Immunofluorescence staining of DAPI (blue) oxLDL (red) and CD31 (green) using 12μm ocular sections from A) naïve mice or B-C) those immunised for EAU (sequential slides). Ganglion cell layer (GCL), inner nuclear layer (INL), inner plexiform layer (IPL), outer nuclear layer (ONL).

Similar articles

Cited by

References

    1. Selmi C. Diagnosis and classification of autoimmune uveitis. Autoimmunity reviews. 2014;13(4):591–4. 10.1016/j.autrev.2014.01.006 - DOI - PubMed
    1. (WHO) WHO. Global data on visual impairments 2010 [cited 2014 July 01].
    1. Yeo TK, Ho SL, Lim WK, Teoh SC. Causes of Visual Loss Associated with Uveitis in a Singapore Tertiary Eye Center. Ocular Immunology & Inflammation. 2013;21(4):264–9. - PubMed
    1. Shewitz-Bowers L, Lee R.W.J., Dick A.D. Immune mechanisms of intraocular inflammation. Expert Reviews. 2010;5(1):43–58.
    1. Forrester JV, Liversidge J, Dick A, McMenamin P, Kuppner M, Crane I, et al. What determines the site of inflammation in uveitis and chorioretinitis? Eye. 1997;11(2):162–6. - PubMed

Publication types

MeSH terms