Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 13;10(4):e0121844.
doi: 10.1371/journal.pone.0121844. eCollection 2015.

Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments

Affiliations

Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments

Gisela C V Ramadas et al. PLoS One. .

Abstract

This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. The ‘erf’ penalty for different δ.
Fig 2
Fig 2. Half-normal plot of effects for Y p.
Fig 3
Fig 3. Half-normal plot of effects for Y e.
Fig 4
Fig 4. Half-normal plot of effects for Y t.

References

    1. Nelder JA and Mead R (1965) A simplex method for function minimization, The Computer Journal 7(4):308–313. 10.1093/comjnl/7.4.308 - DOI
    1. Voglis C and Lagaris IE (2009) Towards ‘Ideal Multistart’. A stochastic approach for locating the minima of a continuous function inside a bounded domain, Applied Mathematics and Computation 213(2): 216–229.
    1. Tsoulos IG and Stavrakoudis A (2010) On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods, Nonlinear Analysis: Real World Applications 11(4): 2465–2471. 10.1016/j.nonrwa.2009.08.003 - DOI
    1. Hirsch ML, Pardalos PM, and Resende MGC (2009) Solving systems of nonlinear equations with continuous GRASP, Nonlinear Analysis: Real World Applications 10(4): 2000–2006. 10.1016/j.nonrwa.2008.03.006 - DOI
    1. Parsopoulos KE and Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization, IEEE Transactions on Evolutionary Computation 8(3): 211–224. 10.1109/TEVC.2004.826076 - DOI

Publication types

LinkOut - more resources