Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug;134(4):717-27.
doi: 10.1111/jnc.13115. Epub 2015 Apr 27.

Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells

Affiliations
Free article

Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells

Felix Ulbrich et al. J Neurochem. 2015 Aug.
Free article

Abstract

Retinal ischemia and reperfusion injuries (R-IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti-apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK-1/2 dependent regulation of heat-shock proteins. Inhalation of Argon (75 Vol%) was performed after R-IRI on the rats' left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat-shock proteins -70, -90 and heme-oxygenase-1, mitogen-activated protein kinases (p38, JNK, ERK-1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova. Argon significantly reduced the R-IRI-affected heat-shock protein expression (p < 0.05). While Argon significantly induced ERK-1/2 expression (p < 0.001), inhibition of ERK-1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme-oxygenase-1 (p < 0.05). R-IRI-induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK-1/2 activation in Müller cells. We conclude, that Argon treatment protects R-IRI-induced apoptotic loss of RGC via an ERK-1/2 dependent regulation of heme-oxygenase-1. We proposed the following possible mechanism for Argon-mediated neuroprotection: Argon exerts its protective effects via an induction of an ERK with subsequent suppression of the heat shock response. In conclusion, ischemia and reperfusion injuries and subsequent neuronal apoptosis are attenuated. These novel findings may open up new opportunities for Argon as a therapeutic option, especially since Argon is not toxic.

Keywords: Argon; apoptosis; heat shock response; ischemia/reperfusion injury; mitogen-activated protein kinases; neuroprotection.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources