Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 12:15:122.
doi: 10.1186/s12879-015-0861-8.

Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt

Affiliations

Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt

Mai Mahmoud Zafer et al. BMC Infect Dis. .

Abstract

Background: Pseudomonas aeruginosa is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. The aim of this study was to examine the genetic relatedness of metallo-beta-lactamase (MBL) producing carbapenem resistant Pseudomonas aeruginosa clinical isolates collected from 2 tertiary hospitals in Cairo, Egypt using Multi Locus sequence typing (MLST).

Methods: Phenotypic and genotypic detection of metallo-beta-lactamase for forty eight non-duplicate carbapenem resistant P. aeruginosa isolates were carried out. DNA sequencing and MLST were done.

Results: The bla VIM-2 gene was highly prevalent (28/33 strains, 85%) among 33 MBL-positive P.aeruginosa isolates. MLST revealed eleven distinct Sequence Types (STs). A unique ST233 clone producing VIM-2 was documented by MLST in P.aeruginosa strains isolated from Cairo university hospitals. The high prevalence of VIM-2 producers was not due to the spread of a single clone.

Conclusions: The findings of the present study clearly demonstrate that clones of VIM-2 positive in our hospitals are different from those reported from European studies. Prevalence of VIM-2 producers of the same clone was detected from surgical specimens whereas oncology related specimens were showing diverse clones.

PubMed Disclaimer

References

    1. Coggan KA, Wolfgang MC. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 2012;14:47–70. - PMC - PubMed
    1. Cabot G, Ocampo-Sosa AA, Dominguez MA, Gago JF, Juan C, Tubau F, et al. Spanish Network for Research in Infectious Diseases (REIPI): genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother. 2012;56:6349–57. doi: 10.1128/AAC.01388-12. - DOI - PMC - PubMed
    1. Oikonomou O, Panopoulou M, Ikonomidis A. Investigation of carbapenem heteroresistance among different sequence types of Pseudomonas aeruginosa clinical isolates reveals further diversity. J Med Microbiol. 2011;60:1556–8. doi: 10.1099/jmm.0.032276-0. - DOI - PubMed
    1. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610. doi: 10.1128/CMR.00040-09. - DOI - PMC - PubMed
    1. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11:381–93. doi: 10.1016/S1473-3099(11)70056-1. - DOI - PubMed

Publication types

LinkOut - more resources