Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 9;19(1):175.
doi: 10.1186/s13054-015-0896-7.

Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside

Affiliations

Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside

Antoine Kimmoun et al. Crit Care. .

Erratum in

Abstract

Lactic acidosis is a very common biological issue for shock patients. Experimental data clearly demonstrate that metabolic acidosis, including lactic acidosis, participates in the reduction of cardiac contractility and in the vascular hyporesponsiveness to vasopressors through various mechanisms. However, the contributions of each mechanism responsible for these deleterious effects have not been fully determined and their respective consequences on organ failure are still poorly defined, particularly in humans. Despite some convincing experimental data, no clinical trial has established the level at which pH becomes deleterious for hemodynamics. Consequently, the essential treatment for lactic acidosis in shock patients is to correct the cause. It is unknown, however, whether symptomatic pH correction is beneficial in shock patients. The latest Surviving Sepsis Campaign guidelines recommend against the use of buffer therapy with pH ≥7.15 and issue no recommendation for pH levels <7.15. Furthermore, based on strong experimental and clinical evidence, sodium bicarbonate infusion alone is not recommended for restoring pH. Indeed, bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. This review addresses the principal hemodynamic consequences of shock-associated lactic acidosis. Despite the lack of formal evidence, this review also highlights the various adapted supportive therapy options that could be putatively added to causal treatment in attempting to reverse the hemodynamic consequences of shock-associated lactic acidosis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Description of the principal pathophysiological effects of severe metabolic acidosis with pH <7.2 on a muscle cell. Transient calcium amplitude: the increase in Ca2+ transient amplitude is the net consequence of the inhibitory effect of low intracellular pH on RyRs, NCX and ICa, and the stimulatory effects of low intracellular pH on NHE, NBC, TRVP-1 and sarcoplasmic reticulum Ca2. Myofilament Ca2+ sensitivity: due to the low intracellular pH, Ca2+ binding to troponin is altered and myofilament Ca2+ sensitivity decreased. Cellular hyperpolarization: intracellular acidosis also enhances hyperpolarization through K+ extrusion. Apoptosis: intracellular acidosis has stimulatory effects on BNIP3, promoting apoptosis. Adrenoreceptors: extracellular and intracellular acidosis reduces the number of adrenoreceptors on the cell membrane. Ica, L-type Ca2+ channel; IP3-R, inositol-1,4,5-triphosphate receptor; NBC, Na+/HCO3 co-transport; NCX, Na+/Ca2+ exchange; NHE, Na+/H+ exchange; pHe, extracellular pH; pHi, intracellular pH; PLB, phospholamban; Ry-R, ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TRVP-1, transient receptor potential channels-1.
Figure 2
Figure 2
Schematic representation of cellular and functional consequences in myocardial and vascular smooth muscle cells in instances of severe lactic acidosis. The same mechanisms are involved in both cell types but with specific functional consequences. PFK, phospho-fructo-kinase; pHe, extracellular pH; pHi, intracellular pH.

References

    1. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815. - PMC - PubMed
    1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Crit Care Med. 2013;41:580–637. - PubMed
    1. Morris CG, Low J. Metabolic acidosis in the critically ill: part 1. Classification and pathophysiology. Anaesthesia. 2008;63:294–301. - PubMed
    1. Kraut JA, Kurtz I. Use of base in the treatment of acute severe organic acidosis by nephrologists and critical care physicians: results of an online survey. Clin Exp Nephrol. 2006;10:111–7. - PubMed
    1. Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Liborio AB, Park M. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med. 2009;37:2733–9. - PubMed