Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 25;16(1):234.
doi: 10.1186/s12864-015-1401-z.

Comparative transcriptomics of a complex of four European pine species

Affiliations

Comparative transcriptomics of a complex of four European pine species

Witold Wachowiak et al. BMC Genomics. .

Abstract

Background: Pinus sylvestris, P. mugo, P. uliginosa and P. uncinata are closely related but phenotypically and ecologically very distinct European pine species providing an excellent study system for analysis of the genetic basis of adaptive variation and speciation. For comparative genomic analysis of the species, transcriptome sequence was generated for 17 samples collected across the European distribution range using Illumina paired-end sequencing technology.

Results: De novo transcriptome assembly of a reference sample of P. sylvestris contained 40968 unigenes, of which fewer than 0.5% were identified as putative retrotransposon sequences. Based on gene annotation approaches, 19659 contigs were identified and assigned to unique genes covering a broad range of gene ontology categories. About 80% of the reads from each sample were successfully mapped to the reference transcriptome of P. sylvestris. Single nucleotide polymorphisms were identified in 22041-24096 of the unigenes providing a set of ~220-262 k SNPs identified for each species. Very similar levels of nucleotide polymorphism were observed across species (π=0.0044-0.0053) and highest pairwise nucleotide divergence (0.006) was found between P. mugo and P. sylvestris at a common set of unigenes.

Conclusions: The study provides whole transcriptome sequence and a large set of SNPs to advance population and association genetic studies in pines. Our study demonstrates that transcriptome sequencing can be a very useful approach for development of novel genomic resources in species with large and complex genomes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Locations of the populations of the four pine species sampled for the study. Populations labelled PS - P. sylvestris, M - P. mugo, UN - P. uncinata, UG - P. uliginosa.
Figure 2
Figure 2
Gene ontology classification of the unigenes.
Figure 3
Figure 3
Shared and unique SNPs in pairwise comparisons between P. sylvestris (S), P. mugo (M), P. uncinata (UN) and P. uliginosa (UG). SNPs total: P. sylvestris (225544), P. mugo (262582), P. uncinata (220365), P. uliginosa (232822).
Figure 4
Figure 4
Principal Coordinates Analysis (PCoA) based on pairwise nucleotide difference matrix at 676 contigs (>1.3Mbp, 27929 SNPs) showing genetic relationships between P. sylvestris (●), P. mugo (■), P. uncinata (♦) and P. uliginosa (▲) samples.

Similar articles

Cited by

References

    1. Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320(5882):1444–9. doi: 10.1126/science.1155121. - DOI - PubMed
    1. Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011;12(2):111–22. doi: 10.1038/nrg2931. - DOI - PubMed
    1. Neale D, Wegrzyn J, Stevens K, Zimin A, Puiu D, Crepeau M, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15(3):R59. doi: 10.1186/gb-2014-15-3-r59. - DOI - PMC - PubMed
    1. Birol I, Raymond A, Jackman S, Pleasance S, Coope R, Taylor G, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7. doi: 10.1093/bioinformatics/btt178. - DOI - PMC - PubMed
    1. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497(7451):579–84. doi: 10.1038/nature12211. - DOI - PubMed

Publication types