Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;22(3):325-35.

[Morphological study on the role of coated vesicle in the specialization of synaptic membrane in synaptogenesis]

[Article in Chinese]
  • PMID: 2588912

[Morphological study on the role of coated vesicle in the specialization of synaptic membrane in synaptogenesis]

[Article in Chinese]
L C Wang et al. Shi Yan Sheng Wu Xue Bao. 1989 Sep.

Abstract

Our object was to characterize the morphological changes of coated vesicles and synaptic membranes during synaptogenesis. Neurons from spinal cords of fetal mice were established as isolated cells in primary culture. After a few days in vitro, the neurons extended their neurites and started their interaction. At timed intervals thereafter, cultures were fixed for electron microscopic observation. Coated vesicles were prominent in the neuronal cytoplasm at the time of synaptogenesis (about 7-10 days in vitro). Similar vesicles were seen in continuity with some cisternae in the Golgi regions and there was an increase in number during the synaptogenic period. Indeed it is not established whether the coated vesicles were exocytotic or pinocytotic in nature, but the cisternae which were in continuity with coated vesicles could be labelled by glucose-6-phosphatase (G6Pase) but not by thiamine pyrophosphatase (TPPase). Such vesicles were also seen in continuity with the neuronal plasmalemma near the closest contact site and contributed their undercoating to pre- and postsynaptic densities. The formation of bilateral membrane specialization was described as being structurally similar to synaptic active zones and appeared to be the first definitive sign of synapseformation. It has been suggested that the synaptic dense material may derive wholly or in part from the exocytic coated vesicles which apparently budding off from endoplasmic reticulum cisternae. This incorporation could provide the mechanism for confining specific characteristics of neuronal membrane to the synaptic region.

PubMed Disclaimer

Similar articles

Publication types