Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr 2:14:33.
doi: 10.1186/s12937-015-0011-6.

The mechanism by which moderate alcohol consumption influences coronary heart disease

Affiliations
Review

The mechanism by which moderate alcohol consumption influences coronary heart disease

Marc J Mathews et al. Nutr J. .

Abstract

Background: Moderate alcohol consumption is associated with a lower risk for coronary heart disease (CHD). A suitably integrated view of the CHD pathogenesis pathway will help to elucidate how moderate alcohol consumption could reduce CHD risk.

Methods: A comprehensive literature review was conducted focusing on the pathogenesis of CHD. Biomarker data were further systematically analysed from 294 cohort studies, comprising 1 161 560 subjects. From the above a suitably integrated CHD pathogenetic system for the purpose of this study was developed.

Results: The resulting integrated system now provides insight into the integrated higher-order interactions underlying CHD and moderate alcohol consumption. A novel 'connection graph' further simplifies these interactions by illustrating the relationship between moderate alcohol consumption and the relative risks (RR) attributed to various measureable CHD serological biomarkers. Thus, the possible reasons for the reduced RR for CHD with moderate alcohol consumption become clear at a glance.

Conclusions: An integrated high-level model of CHD, its pathogenesis, biomarkers, and moderate alcohol consumption provides a summary of the evidence that a causal relationship between CHD risk and moderate alcohol consumption may exist. It also shows the importance of each CHD pathway that moderate alcohol consumption influences.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Conceptual model of general lifestyle factors, salient CHD pathogenetic pathways and CHD hallmarks. From “How do high glycemic load diets influence coronary heart disease?” by Mathews MJ, Liebenberg L, Mathews EH. Nutr Metab. 2015:12:6 [14]. The affective pathway of pharmacotherapeutics, blue boxes, is shown in Figure 1, and salient serological biomarkers are indicated by the formula image icon. The blunted blue arrows denote antagonise or inhibit and pointed blue arrows denote up-regulate or facilitate. HDL denotes high-density lipoprotein; LDL, low-density lipoprotein; oxLDL, oxidised LDL; FFA, free fatty acids; TMAO, an oxidation product of trimethylamine (TMA); NLRP3, Inflammasome responsible for activation of inflammatory processes as well as epithelial cell regeneration and microflora; Hs, homocysteine; IGF-1, insulin-like growth factor-1; TNF-α, tumour necrosis factor-α; IL, interleukin; NO, nitric oxide; NO-NSAIDs, combinational NO-non-steroidal anti-inflammatory drug; SSRI, serotonin reuptake inhibitors; ROS, reactive oxygen species; NFκβ, nuclear factor-κβ; SMC, smooth muscle cell; HbA1c, glycated haemoglobin A1c; P. gingivalis, Porphyromonas gingivalis; vWF, von Willebrand factor; PDGF, platelet-derived growth factor; MIF, macrophage migration inhibitory factor; SCD-40, recombinant human sCD40 ligand; MPO, myeloperoxidase; MMP, matrix metalloproteinase; VCAM, vascular cell adhesion molecule; ICAM, intracellular adhesion molecule; CRP, C-reactive protein; PAI, plasminogen activator inhibitor; TF, tissue factor, MCP, monocyte chemoattractant protein; BDNF, brain-derived neurotrophic factor; PI3K, phosphatidylinositol 3-kinase; MAPK, mitogen-activated protein (MAP) kinase; RANKL, receptor activator of nuclear factor kappa-beta ligand; OPG, osteoprotegerin; GCF, gingival crevicular fluid; D-dimer, fibrin degradation product D; BNP, B-type natriuretic peptide; ACE, angiotensin-converting-enzyme; COX, cyclooxygenase; β-blocker, beta-adrenergic antagonists.
Figure 2
Figure 2
Normalised relative risks (fold-change) of salient current biomarkers or of potential serological biomarkers for CHD. From “How do high glycemic load diets influence coronary heart disease?” by Mathews MJ, Liebenberg L, Mathews EH. Nutr Metab.2015:12:6 [14] Increased IGF-1 and HDL levels are associated with a moderately decreased CHD risk. (IGF-1and HDL levels are significantly inversely correlated to relative risk for CHD.) N indicates number of trials; I, standard error; Adipo, adiponectin; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; ACR, albumin-to-creatinine ratio; GDF-15, growth-differentiation factor-15; Cysteine, Homocysteine; LDL, low-density lipoprotein; HbA1c, glycated haemoglobin A1c; Trop, troponins; Trigl, triglycerides; CRP, C-reactive protein; IL-6, interleukin-6; Fibrin, fibrinogen; Cort, cortisol; TNF-α, tumour necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin; BDNF, brain-derived neurotrophic factor; HOMA, homeostasis model assessment.
Figure 3
Figure 3
Interconnection of relative risk effects of moderate alcohol consumption and serological biomarkers for CHD. “ACR” denotes, albumin-to-creatinine ratio; Trop, troponins; Fibrin, fibrinogen; MPO, myeloperoxidase; BNP, B-type natriuretic peptide; Cysteine, Homocysteine; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Trigl, triglycerides; ApoB, Apolipoprotein-B; Adipon, adiponectin; HbA1c, glycated haemoglobin A1c; Cort, cortisol; IGF-1, insulin-like growth factor-1; BDNF, brain-derived neurotrophic factor; GDF-15, growth-differentiation factor-15; CRP, C-reactive protein; IL-6, interleukin-6; TNF-α, tumour necrosis factor-α; RANKL or OPG, osteoprotegerin.

Similar articles

Cited by

References

    1. Mathers CD, Boerma T, Fat DM. Global and regional causes of death. Br Med Bull. 2009;92:7–32. doi: 10.1093/bmb/ldp028. - DOI - PubMed
    1. Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B, VanDenburgh M, et al. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med. 1993;329:1829–34. doi: 10.1056/NEJM199312163292501. - DOI - PubMed
    1. Hvidtfeldt UA, Tolstrup JS, Jakobsen MU, Heitmann BL, Grønbæk M, O'Reilly E, et al. Alcohol intake and risk of coronary heart disease in younger, middle-aged, and older adults. Circulation. 2010;121:1589–97. doi: 10.1161/CIRCULATIONAHA.109.887513. - DOI - PMC - PubMed
    1. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ. 1999;319:1523–8. doi: 10.1136/bmj.319.7224.1523. - DOI - PMC - PubMed
    1. Jackson R, Scragg R, Beaglehole R. Alcohol consumption and risk of coronary heart disease. BMJ. 1991;303:211–6. doi: 10.1136/bmj.303.6796.211. - DOI - PMC - PubMed