Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2015 Jun;175(6):1037-47.
doi: 10.1001/jamainternmed.2015.0930.

Thyroid function within the normal range and risk of coronary heart disease: an individual participant data analysis of 14 cohorts

Collaborators, Affiliations
Meta-Analysis

Thyroid function within the normal range and risk of coronary heart disease: an individual participant data analysis of 14 cohorts

Bjørn O Åsvold et al. JAMA Intern Med. 2015 Jun.

Abstract

Importance: Some experts suggest that serum thyrotropin levels in the upper part of the current reference range should be considered abnormal, an approach that would reclassify many individuals as having mild hypothyroidism. Health hazards associated with such thyrotropin levels are poorly documented, but conflicting evidence suggests that thyrotropin levels in the upper part of the reference range may be associated with an increased risk of coronary heart disease (CHD).

Objective: To assess the association between differences in thyroid function within the reference range and CHD risk.

Design, setting, and participants: Individual participant data analysis of 14 cohorts with baseline examinations between July 1972 and April 2002 and with median follow-up ranging from 3.3 to 20.0 years. Participants included 55,412 individuals with serum thyrotropin levels of 0.45 to 4.49 mIU/L and no previously known thyroid or cardiovascular disease at baseline.

Exposures: Thyroid function as expressed by serum thyrotropin levels at baseline.

Main outcomes and measures: Hazard ratios (HRs) of CHD mortality and CHD events according to thyrotropin levels after adjustment for age, sex, and smoking status.

Results: Among 55,412 individuals, 1813 people (3.3%) died of CHD during 643,183 person-years of follow-up. In 10 cohorts with information on both nonfatal and fatal CHD events, 4666 of 48,875 individuals (9.5%) experienced a first-time CHD event during 533,408 person-years of follow-up. For each 1-mIU/L higher thyrotropin level, the HR was 0.97 (95% CI, 0.90-1.04) for CHD mortality and 1.00 (95% CI, 0.97-1.03) for a first-time CHD event. Similarly, in analyses by categories of thyrotropin, the HRs of CHD mortality (0.94 [95% CI, 0.74-1.20]) and CHD events (0.97 [95% CI, 0.83-1.13]) were similar among participants with the highest (3.50-4.49 mIU/L) compared with the lowest (0.45-1.49 mIU/L) thyrotropin levels. Subgroup analyses by sex and age group yielded similar results.

Conclusions and relevance: Thyrotropin levels within the reference range are not associated with risk of CHD events or CHD mortality. This finding suggests that differences in thyroid function within the population reference range do not influence the risk of CHD. Increased CHD risk does not appear to be a reason for lowering the upper thyrotropin reference limit.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Peeters has received lecture and consultancy fees from Genzyme Europe. No other disclosures were reported.

Figures

Figure
Figure. Hazard Ratios (HRs) of Coronary Heart Disease (CHD) Mortality, a First-Time CHD Event, and a First-Time Hard CHD Event per 1-mIU/L Higher Thyrotropin Level at Baseline, Adjusted for Age, Sex, and Smoking at Baseline
The squares represent HRs from each cohort, and the lines represent 95% CIs. The diamonds represent pooled HRs (with 95% CIs) from random-effects (DerSimonian and Laird [D+L] Overall) and fixed-effect (inverse variance [I-V] Overall) meta-analysis. EPIC-Norfolk indicates European Prospective Investigation of Cancer–Norfolk; HUNT, Nord-Trøndelag Health Study; InCHIANTI, Invecchiare in Chianti; and PROSPER, Prospective Study of Pravastatin in the Elderly at Risk. aWeights are from random-effects analysis.

References

    1. Cappola AR, Ladenson PW. Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab. 2003;88(6):2438–2444. - PubMed
    1. Rodondi N, den Elzen WP, Bauer DC, et al. Thyroid Studies Collaboration. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304(12):1365–1374. - PMC - PubMed
    1. Åsvold BO, Vatten LJ, Midthjell K, Bjøro T. Serum TSH within the reference range as a predictor of future hypothyroidism and hyperthyroidism: 11-year follow-up of the HUNT Study in Norway. J Clin Endocrinol Metab. 2012;97(1):93–99. - PubMed
    1. Spencer CA, Hollowell JG, Kazarosyan M, Braverman LE. National Health and Nutrition Examination Survey III thyroid-stimulating hormone (TSH)-thyroperoxidase antibody relationships demonstrate that TSH upper reference limits may be skewed by occult thyroid dysfunction. J Clin Endocrinol Metab. 2007;92(11):4236–4240. - PubMed
    1. Vanderpump MP, Tunbridge WM, French JM, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf) 1995;43(1):55–68. - PubMed

Publication types

Grants and funding