Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr 20;6(11):8474-90.
doi: 10.18632/oncotarget.3523.

MicroRNAs in apoptosis, autophagy and necroptosis

Affiliations
Review

MicroRNAs in apoptosis, autophagy and necroptosis

Zhenyi Su et al. Oncotarget. .

Abstract

MicroRNAs (miRNAs) are endogenous 22 nt non-coding RNAs that target mRNAs for cleavage or translational repression. Numerous miRNAs regulate programmed cell death including apoptosis, autophagy and necroptosis. We summarize how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression. We also discuss how miRNAs link different types of cell death.

Keywords: apoptosis; autophagy; cancer progression; microRNA; necroptosis.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1. miRNAs regulate the major apoptosis pathways
The orange region represents the extrinsic apoptotic pathway; the yellow region represents the intrinsic apoptotic pathway; the blue region represents ER stress-induced apoptosis; the purple region represents common members of different apoptotic pathways; the green region represents critical regulators controlling apoptosis. Major miRNAs that regulate apoptosis effectors are shown in the diagram in dark blue. FasL, Fas ligand; TRAIL, TNF-related apoptosis-inducing ligand; DR4, death receptor 4; FADD, Fas-associated death domain protein; c-FLIP, cellular FLICE-like inhibitory protein; CHOP, C/EBP-homologous protein; IRE1, inositol-requiring protein-1; XIAP, X-linked inhibitor of apoptosis; Maspin, mammary serine protease inhibitor; DAPK, death-associated protein kinase; cIAP1/2, cellular inhibitor of apoptosis 1/2; Smac, second mitochondria-derived activator of caspases, also referred to as DIABLO. See the text for details.
Figure 2
Figure 2. miRNAs regulate the major cascades of autophagy
Autophagy includes at least six successive events: induction, vesicle nucleation (or phagophore formation), vesicle elongation and autophagosome formation, ATG protein and lipid retrieval, fusion of the autophagosome to an lysosome/endosome and autolysosome formation, and autolysosome cargo degradation. The ULK complex, which is composed of ULK1/2, ATG13, FIP200, and ATG101, is activated by the inhibition of mTORC1 and initiates the autophagy program. The class III PI3K complex, which is composed of Beclin-1, class III PI3K (i.e., Vps34), p150 (i.e., Vps15), ATG14L, and certain regulatory factors, is essential for vesicle nucleation. Two ubiquitin-like protein conjugation systems form two important complexes (the LC3-II-PE complex and the ATG5-ATG12-ATG16L1 complex) that are critical for vesicle elongation. The transmembrane proteins VMP1 and ATG9 also play a role in nascent autophagosome formation. The major miRNAs involved in the regulation of key members of autophagy cascades are shown in the diagram in dark blue. mTORC1, mammalian target of rapamycin complex 1; ULK, UNC-51-like kinase; ATG, autophagy-related gene; FIP200, focal adhesion kinase family-interacting protein of 200 kDa; UVRAG, UV radiation resistance-associated gene; Rubicon, RUN domain protein as Beclin-1 interacting and cysteine-rich containing; PE, phosphatidylethanolamine; VMP1, vacuole membrane protein 1; PI3K, phosphatidylinositol-3 kinase. Pro-LC3, primary translation product of LC3; LC3-I, cytosolic form of LC3 that is cleaved from Pro-LC3 by ATG4; LC3-II, lipidated form of LC3 that is conjugated to PE. See the text for details.
Figure 3
Figure 3. Induction and regulation of autophagy by miRNAs
Growth signals, energy status (the abundance of glucose and amino acids), genotoxic stress, hypoxic stress, ER stress, and ROS elicit a series of signaling pathways that initiate or repress autophagy cascades. AMPK-mTORC1 lies at the heart of regulation of autophagy by integrating numerous stimuli and pathways into a signal for the starting point of autophagy, the ULK complex. In addition, ER stress and ROS regulate autophagy independently of the AMPK-mTORC1 pathway. The major miRNAs involved in autophagy regulation are shown in the diagram in dark blue. PDK1, 3-phosphoinositide-dependent protein kinase-1; TSC, tuberous sclerosis complex; Rheb, Ras homolog enriched in brain (a GTPase); REDD1, regulated in development and DNA damage responses 1; BNIP3, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3; mLST8, mammalian lethal with Sec13 protein 8, also referred to as GβL; mTOR, mammalian target of rapamycin; Raptor, regulatory-associated protein of mTOR; MEK, mitogen-activated protein kinase kinase; Rag, a GTPase family member; AMPK, AMP-activated protein kinase; TAK1, TGF-β-activated kinase 1; LKB1, liver kinase B1; DRAM, damage-regulated autophagy modulator; DAPK, death-associated protein kinase; CAMKKβ, calcium/calmodulin kinase kinase β; eIF2α, eukaryotic initiation factor 2α. See the text for details.
Figure 4
Figure 4. miRNAs regulate necroptosis
Necroptosis is triggered by TNF receptor superfamily members, TLRs, IFNRs, TCR, cellular metabolic and genotoxic stresses, and anticancer drugs. In TNF-α-induced necroptosis, the engagement of TNFR1 recruits Complex I (composed of TRADD, RIP1, TRAF2, CYLD, and cIAP1/2). In this complex, cIAP1 and cIAP2 ubiquitinate RIP1, whereas CYLD deubiquitinates RIP1. Polyubiquitinated RIP1 promotes NF-κB activation and prevents the formation of Complex II a (composed of caspase-8, FADD, RIP1) and Complex II b (composed of caspase-8, FADD, RIP1, RIP3, and MLKL), thus promoting cell survival and inhibiting apoptosis and necroptosis. RIP1 deubiquitination enables Complex II a formation, but whether the cell undergoes necroptosis is dependent on caspase-8 activity. Activated caspase-8 cleaves RIP1 and RIP3 and blocks necroptosis. However, if caspase-8 is inactivated by a pharmacological inhibitor (e.g., zVAD), an endogenous inhibitor (e.g., c-FLIPS) or genetic caspase-8 or FADD inhibition/deletion, it loses the capacity to cleave RIP1 and RIP3, leading to the trans-phosphorylation of these two kinases and the formation of a filamentous-like complex termed the necrosome. The RIP1-RIP3 necrosome subsequently recruits and activates MLKL and PGAM5. MLKL is phosphorylated by RIP3 and then forms a homotrimer that translocates to the plasma membrane, and this event leads to necrotic plasma membrane permeabilization. Upon necrosis induction, PGAM5S recruits and activates Drp1, which leads to mitochondrial fission, which is an early and necessary step for necrosis execution. The miRNAs involved in the regulation of key components of the necroptotic pathway are shown in the diagram in dark blue. TLRs, Toll-like receptors; TCR, T-cell receptor; IFNRs, interferon receptors; TNFR1, TNF-α receptor 1; TRADD, TNFR1-associated death domain protein; TRAF2, TNF receptor-associated factor 2; CYLD, cylindromatosis; cIAP1/2, cellular inhibitor of apoptosis 1/2; RIP1, receptor-interacting protein kinase 1, also referred to as RIPK1; IKK, IκB kinase; c-FLIPS, cellular FLICE-like inhibitory protein, short form. PGAM5, phosphoglycerate mutase 5; MLKL, mixed lineage kinase domain-like; Drp1, dynamin-related protein 1.
Figure 5
Figure 5. MiRNAs regulate the crosstalk between apoptosis, autophagy, and necroptosis
Accumulating studies have shown that a close interaction between apoptosis, autophagy, and necroptosis. Some proteins that are conventionally thought to participate in apoptosis (blue) may play novel roles in autophagy or necroptosis. Alternatively, some autophagy modulators (yellow) may play a role in other modes of programmed cell death. The major miRNAs involved in the regulation of the crosstalk between apoptosis, autophagy, and necroptosis are shown in the diagram in dark blue. See the text for details.

References

    1. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–1046. - PMC - PubMed
    1. Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012;481:190–194. - PubMed
    1. Sanchez-Diaz PC, Hsiao T-H, Zou Y, Sugalski AJ, Heim-Hall J, Chen Y, Langevin A-M, Hung JY. In silico functional analyses and discovery of survival-associated microRNA signatures in pediatric osteosarcoma. Oncoscience. 2014;1:599. - PMC - PubMed
    1. Ninio-Many L, Grossman H, Levi M, Zilber S, Tsarfaty I, Shomron N, Tuvar A, Chuderland D, Stemmer SM, Ben-Aharon I. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience. 2014;1:250. - PMC - PubMed
    1. Martin EC, Krebs AE, Burks HE, Elliott S, Baddoo M, Collins-Burow BM, Flemington EK, Burow ME. miR-155 induced transcriptome changes in the MCF-7 breast cancer cell line leads to enhanced mitogen activated protein kinase signaling. Genes & cancer. 2014;5:353. - PMC - PubMed

Publication types

MeSH terms