Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun;72(6):642-9.
doi: 10.1001/jamaneurol.2015.0203.

Clinical Features and Diagnostic Usefulness of Antibodies to Clustered Acetylcholine Receptors in the Diagnosis of Seronegative Myasthenia Gravis

Affiliations

Clinical Features and Diagnostic Usefulness of Antibodies to Clustered Acetylcholine Receptors in the Diagnosis of Seronegative Myasthenia Gravis

Pedro M Rodríguez Cruz et al. JAMA Neurol. 2015 Jun.

Abstract

Importance: Cell-based assays (CBAs) were shown to improve detection of acetylcholine receptor (AChR) antibodies in patients with myasthenia gravis (MG). Herein, we asked whether these assays were able to help determine the diagnosis in patients studied in routine clinical practice.

Objectives: To determine the diagnostic usefulness of CBAs in the diagnosis of MG and to compare the clinical features of patients with antibodies only to clustered AChRs with those of patients with seronegative MG (SNMG).

Design, setting, and participants: All patients with clinical suspicion of MG who were seen within the Division of Clinical Neurology at the John Radcliffe Hospital in Oxford, England, between November 1, 2009, and November 30, 2013. Their serum antibodies and clinical features were studied.

Exposures: Radioimmunoprecipitation assay (RIPA) and CBA were used to test for standard AChR antibodies and antibodies to clustered AChRs in 138 patients. All available samples from patients with SNMG were retrospectively tested for lipoprotein receptor-related protein 4 (LRP4) antibodies.

Main outcomes and measures: Demographic, clinical, neurophysiological, and laboratory data.

Results: In total, 138 patients were tested for antibodies to clustered AChRs, and 42 had a final diagnosis of MG. The clustered AChR CBA detected antibodies in 38.1% (16 of 42) of RIPA-negative patients with MG with 100% specificity. All patients with SNMG who were tested for LRP4 antibodies (21 of 26) were negative by CBA. Compared with patients with SNMG, patients with antibodies only to clustered AChRs had frequent prepubertal onset (62.5% [median age, 6 years; age range, 1-52 years] vs 11.5% [median age, 38 years; age range, 2-72 years], P ≤ .05), high prevalence of ocular MG (62.5% vs 42.3%), milder disease severity with less bulbar involvement (25.0% vs 46.2%), and absence of respiratory symptoms (0% vs 23.1%). Response to treatment and prognosis was good, with a reduced need for thymectomy (6.3% vs 19.2%) and a high proportion of patients going into remission (50.0% vs 8.3%, P ≤ .05). These observations also apply to the classic AChR MG phenotype seen in large series.

Conclusions and relevance: Cell-based assay is a useful procedure in the routine diagnosis of RIPA-negative MG, particularly in children. Patients with antibodies only to clustered AChRs appear to be younger and have milder disease than other patients with MG. These observations will have implications in planning treatment.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Rodríguez Cruz reported being supported by the National Health Service National Specialised Commissioning Group for Congenital Myasthenia. Dr Huda reported being supported by a Watney, Myasthenia Gravis Association, and Oxford Biomedical Research Centre fellowship. Ms Buckley reported receiving research support from the Medical Research Council, United Kingdom. Dr Vincent reported serving on scientific advisory boards for the Patrick Berthoud Charitable Trust, the Brain Research Trust, and the Myasthenia Gravis Foundation of America; reported receiving funding for travel and a speaker honorarium from Baxter International, Inc, and Biogen, Idec; reported being an associate editor for Brain; reported earning royalties from the publication of Clinical Neuroimmunology (Blackwell Publishing, 2005) and Inflammatory and Autoimmune Disorders of the Nervous System in Children (Mac Keith Press, 2010); reported obtaining research support from the European Union, National Institute for Health Research Oxford Biomedical Research Centre, Euroimmun AG, and the Sir Halley Stewart Trust; and reported receiving MuSK antibody royalties and consulting fees from Athena Diagnostics, Inc. Dr Leite reported being supported by the National Health Service National Specialised Commissioning Group for Neuromyelitis Optica and by the National Institute for Health Research Oxford Biomedical Research Centre and reported receiving speaking honoraria from Biogen Idec and travel grants from Novartis. Dr Palace reported being partly funded by highly specialized services to run a national congenital myasthenia service and a neuromyelitis optica service; reported receiving support for scientific meetings and honoraria for advisory work from Merck Serono, Biogen Idec, Novartis, Teva, Chugai Pharma, and Bayer Schering and unrestricted grants from Merck Serono, Novartis, Biogen Idec, and Bayer Schering; reported that her hospital trust receives funds for her role as a clinical lead for the United Kingdom Department of Health risk-sharing scheme; reported receiving grants from the National Multiple Sclerosis Society and The Guthie-Jackson Charitable Foundation for unrelated research studies; and reported serving as a board member for the charitable European MS foundation “The Charcot Foundation” and on the steering committee for the European collaborative multiple sclerosis imaging group “Magnetic Resonance Imaging in Multiple Sclerosis.” No other disclosures were reported.

Figures

Figure 1
Figure 1. Flowchart Showing Patients Included in the Study
The clustered acetylcholine receptor (AChR) cell-based assay detected antibodies in 16 of 42 (38.1%) patients with radioimmunoprecipitation assay (RIPA)-negative myasthenia gravis (MG). LRP4 indicates lipoprotein receptor-related protein 4; MuSK, muscle-specific tyrosine kinase.
Figure 2
Figure 2. Age at Onset, Maximum Myasthenia Gravis Foundation of America (MGFA) Grade, and MGFA Postintervention Status in Patients With Myasthenia Gravis (MG)
Patients with antibodies only to clustered acetylcholine receptors (AChR) have younger age at onset and a milder MGFA grade (A) compared with patients with seronegative MG (SNMG) (B). Patients with clustered AChR antibodies went into remission in a higher proportion compared with patients with SNMG (C). The images represent the binding of IgG antibodies to AChRs clustered by rapsyn-EGFP on HEK cells surface (green) and detected by antihuman IgG (red). Positive binding of serum from a clustered AChR antibody-positive MG patient (A). Negative binding of serum from a SNMG patient (B). CSR indicates complete stable remission; MM, minimal manifestations; NR, no remission; and PR, pharmacological remission.

Comment in

Similar articles

Cited by

References

    1. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054–1059. - PubMed
    1. Vincent A, Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. J Neurol Neurosurg Psychiatry. 1985;48(12):1246–1252. - PMC - PubMed
    1. Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002;2(10):797–804. - PubMed
    1. Soliven BC, Lange DJ, Penn AS, et al. Seronegative myasthenia gravis. Neurology. 1988;38(4):514–517. - PubMed
    1. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7(3):365–368. - PubMed