Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;51(1):70-6.
doi: 10.1111/jre.12284. Epub 2015 Apr 21.

Influence of complement on neutrophil extracellular trap release induced by bacteria

Affiliations

Influence of complement on neutrophil extracellular trap release induced by bacteria

L J Palmer et al. J Periodontal Res. 2016 Feb.

Abstract

Background and objectives: Neutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induced by Staphylococcus aureus and three oral bacteria: Actinomyces viscosus, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum subsp. vincettii.

Material and methods: Bacteria-stimulated NET release from the neutrophils of healthy donors was measured fluorometrically. Various complement containing and complement blocking conditions were used, including heat inactivation of the serum and antibody blockade of complement receptors 1 (CR1, CD35) and 3 (CR3, CD11b/CD18).

Results: While the presence of serum markedly enhanced NET release induced by S. aureus, A. actinomycetemcomitans, and to a lesser extent by A. viscosus, there was no enhancement of NET release induced by F. nucleatum. The serum-mediated enhancement of NET release by A. actinomycetemcomitans was neutralized by heat inactivation of serum complement, while this was not the case for S. aureus. Blockade of CR1, significantly reduced NET release induced by S. aureus, A. actinomycetemcomitans and A. viscosus, while blockade of CR3, had no effect. However, opsonization of S. aureus with antibodies may also have contributed to the enhancing effect of serum, independently of complement, in that purified IgG promoted NET release.

Conclusions: In conclusion, complement opsonization promotes NET release induced by a variety of bacteria, including A. actinomycetemcomitans, and CR1 plays a dominant role in the process. Complement consumption or deficiency may compromise NETosis induced by some bacterial species, including A. actinomycetemcomitans. Within biofilms, the complement-inactivating abilities of some bacteria may protect other species against NETosis, while these are more vulnerable when adopting a planktonic lifestyle.

Keywords: biofilm; complement; inflammation; neutrophil extracellular traps; periodontal disease.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources