Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr;66(2):273-83.

Celastrol overcomes HSP72 gene silencing-mediated muscle atrophy and induces myofiber preservation

Affiliations
  • PMID: 25903958
Free article

Celastrol overcomes HSP72 gene silencing-mediated muscle atrophy and induces myofiber preservation

T Gwag et al. J Physiol Pharmacol. 2015 Apr.
Free article

Abstract

To elucidate a potential anabolic role of heat shock proteins (HSPs) in myofiber preservation, we assessed the effect of HSP70 gene silencing versus its overexpression on skeletal muscle atrophy or rescue. HSP72 gene expression was silenced by pre-treatment with HSP72 siRNA in cultured rat L6 myotubes, and the pro-anabolic effect of HSPs was examined in the absence or presence of the HSP inducer celastrol (CEL). Compared to the negative control (NC), both nuclear accumulation and phosphorylation of heat shock transcription factor 1 remained high under the 6-h treatment of CEL. The HSP72 siRNA treatment significantly decreased HSP72 mRNA and protein expression and myotube diameter. CEL treatment, however, markedly increased the HSP72 expression and rendered the myotube size recovered to the NC level even in the siRNA-treated cells. Moreover, the HSP72 siRNA upregulated forkhead box O3 (FoxO3) expression in the nucleus while CEL increased p-FoxO3 exclusively in the cytoplasm, thus leaving the p-FoxO3/FoxO3 balanced to the NC level by siRNA + CEL treatment. The atrophic effect of HSP72 siRNA was consistent with the upregulation of atrogin-1 and proteasome activity but CEL treatment abrogated such effect by activation of Akt1, ribosomal S6 kinase (S6K) and extracellular signal-regulated kinase 1/2 (ERK1/2), irrespective of HSP72 silencing. These results suggest that CEL-mediated overexpression of HSP72 overcomes the atrophic effect of HSP72 gene silencing via both enhancement of FoxO3 phosphorylation and activation of Akt1-ERK1/2 signaling pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources