Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 6;41(3):175-82.
doi: 10.1002/biof.1211. Epub 2015 Apr 22.

High fat diet-Induced obesity alters vitamin D metabolizing enzyme expression in mice

Affiliations

High fat diet-Induced obesity alters vitamin D metabolizing enzyme expression in mice

Jeong Min Park et al. Biofactors. .

Abstract

Low serum 25(OH)D concentrations have been reported in obese humans. Inadequate sun exposure and impaired hepatic 25-hydroxylation have been suggested as possible reasons for obesity-associated vitamin D deficiency; however, the underlying mechanism has not been elucidated. We investigated the effects of high fat diet-induced obesity on vitamin D status and vitamin D metabolizing enzyme expression. Male C57BL mice (4 weeks old) were fed control diet containing 10% energy from fat (control group) or high fat diet containing 45% energy from fat (obese group) for 18 weeks. There were no differences in serum 25(OH)D concentrations between two groups, while serum 1,25(OH)2 D concentrations were significantly higher in obese mice. Hepatic mRNA levels of 25-hydroxylases (Cyp2r1, Cyp27a1, and Cyp2j3) were lower in the obese group (31, 30, and 48% lower, respectively). Renal 1α-hydroxylase (Cyp27b1) mRNA levels were higher and 24-hydroxylase (Cyp24) mRNA levels were lower in the obese group. Serum 1,25(OH)2 D concentrations correlated positively with renal Cyp27b1 expression levels and negatively with renal Cyp24 expression levels. Serum PTH concentrations were higher in obese mice. In visceral adipose tissue, Cyp27a1, Cyp2j3, and vitamin D receptor mRNA levels were higher in obese mice. Overall, vitamin D metabolizing enzyme expression was influenced by high fat diet-induced obesity, which might partly explain the mechanisms of the altered vitamin D endocrine system associated with obesity. Higher serum PTH and 1,25(OH)2 D concentrations in obese mice suggest abnormal regulation of serum 1,25(OH)2 D concentrations due to hyperparathyroidism, which might have contributed to lower hepatic 25-hydroxylase mRNA levels.

Keywords: 1,25-dihydroxyvitamin D; 25-hydroxyvitamin D; hepatic 25-hydroxylase; high fat diet-induced obesity; renal 1α-hydroxylase; renal 24-hydroxylase.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources