Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug 3:206:24-38.
doi: 10.1016/j.ijfoodmicro.2015.04.005. Epub 2015 Apr 8.

Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations

Affiliations
Free article
Review

Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations

Jan Steensels et al. Int J Food Microbiol. .
Free article

Abstract

Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol.

Keywords: Bioethanol; Brettanomyces anomala; Custers effect; Lambic; Viable but nonculturable (VBNC); β-Glycosidase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources