Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;1852(7):1550-9.
doi: 10.1016/j.bbadis.2015.04.017. Epub 2015 Apr 23.

Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway

Affiliations
Free article

Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34a/SIRT1 pathway

Hyo Jeong Kim et al. Biochim Biophys Acta. 2015 Jul.
Free article

Abstract

Hepatic ischemia/reperfusion (I/R) injury can arise as a complication of liver surgery and transplantation. Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, modulates inflammation and apoptosis in response to oxidative stress. SIRT1, which is regulated by p53 and microRNA-34a (miR-34a), can modulate non-alcoholic fatty liver disease, fibrosis and cirrhosis. Since carbon monoxide (CO) inhalation can protect against hepatic I/R, we hypothesized that CO could ameliorate hepatic I/R injury by regulating the miR-34a/SIRT1 pathway. Livers from mice pretreated with CO, or PFT, a p53 inhibitor, displayed reduced production of pro-inflammatory mediators, including TNF-α, iNOS, interleukin (IL)-6, and IL-1β after hepatic I/R injury. SIRT1 expression was increased by CO or PFT in the liver after I/R, whereas acetylated p65, p53 levels, and miR-34a expression were decreased. CO increased SIRT1 expression by inhibiting miR-34a. Both CO and PFT diminished pro-inflammatory cytokines production in vitro. Knockdown of SIRT1 in LPS-stimulated macrophages increased NF-κB acetylation, and increased pro-inflammatory cytokines. CO treatment reduced miR-34a expression and increased SIRT1 expression in oxidant-challenged hepatocytes; and rescued SIRT1 expression in p53-expressing or miR-34a transfected cells. In response to CO, enhanced SIRT1 expression mediated by miR-34a inhibition protects against liver damage through p65/p53 deacetylation, which may mediate inflammatory responses and hepatocellular apoptosis. The miR-34a/SIRT1 pathway may represent a therapeutic target for hepatic injury.

Keywords: Carbon monoxide; Liver; SIRT1; miR-34a; p53.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms