Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 1:221:29-38.
doi: 10.1016/j.jviromet.2015.04.022. Epub 2015 Apr 25.

Performance assessment of the Illumina massively parallel sequencing platform for deep sequencing analysis of viral minority variants

Affiliations

Performance assessment of the Illumina massively parallel sequencing platform for deep sequencing analysis of viral minority variants

Kim Thys et al. J Virol Methods. .

Abstract

Massively parallel sequencing (MPS) technology has opened new avenues to study viral dynamics and treatment-induced resistance mechanisms of infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Whereas the Roche/454 platform has been used widely for the detection of low-frequent drug resistant variants, more recently developed short-read MPS technologies have the advantage of delivering a higher sequencing depth at a lower cost per sequenced base. This study assesses the performance characteristics of Illumina MPS technology for the characterization of genetic variability in viral populations by deep sequencing. The reported results from MPS experiments comprising HIV and HCV plasmids demonstrate that a 0.5-1% lower limit of detection can be achieved readily with Illumina MPS while retaining good accuracy also at low frequencies. Deep sequencing of a set of clinical samples (12 HIV and 9 HCV patients), designed at a similar budget for both MPS platforms, reveals a comparable lower limit of detection for Illumina and Roche/454. Finally, this study shows the possibility to apply Illumina's paired-end sequencing as a strategy to assess linkage between different mutations identified in individual viral subspecies. These results support the use of Illumina as another MPS platform of choice for deep sequencing of viral minority species.

Keywords: Deep sequencing; HCV; HIV; Illumina; Massively parallel sequencing; Viral minority.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources