Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 28;10(4):e0121216.
doi: 10.1371/journal.pone.0121216. eCollection 2014.

A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli

Affiliations

A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli

Akintunde Emiola et al. PLoS One. .

Abstract

Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Structure of KDO2-lipid A.
The top two sugars are KDO groups, which are part of the core oligosaccharide, while the remainder of the structure represents lipid A.
Fig 2
Fig 2. Model of the E. coli KDO2-lipid A biosynthesis pathway.
Enzymes and metabolites are shown with three text styles: upright bold indicates that these concentrations are fixed, upright plain indicates that these concentrations vary, and italics indicates that these species are not included in the model explicitly. Black arrows with barbed heads represent chemical reactions in which reactants are converted to products. Red arrows with closed heads represent enzymatic influences on chemical reaction rates, and red arrows with T-bar heads represent inhibitory influences. Variables represent model parameters. Numbers next to black arrows for bi-substrate reactions show which substrate is designated number 1 and number 2.
Fig 3
Fig 3. Lipid A disaccharide accumulation.
Bars indicate intracellular counts of lipid X and lipid A disaccharide at the end of a single cell generation from preliminary model results. The model used the scheme shown in Fig 2 and parameters listed in Table 1, with the exceptions: the FtsH count was set to zero, the LpxC and WaaA counts were set to their steady-state levels in the absence of FtsH degradation (1540 and 978, respectively), and all metabolites were started with zero molecules. Although not shown here, the lipid X count had stabilised at a constant level, while the lipid A disaccharide count was increasing at a constant rate of 924 molecules/s.
Fig 4
Fig 4. Comparison of model with experiment.
(A) Effect of CHIR-090 antibiotic on lipid A production. The model (Fig 2 plus Eq 7) was started with all metabolites at their steady-state concentrations without CHIR-090. Then, antibiotic was added and the total amount of lipid A produced over the following 30 minutes was quantified, shown with the solid black line. The free antibiotic concentration, quantified as the average number of uncomplexed CHIR-090 molecules/cell, was kept constant. The black dashed line shows our estimate of the MIC for the intracellular antibiotic concentration and the red dashed line shows the antibiotic inhibition constant [9]. (B) Correlation between LpxC half-life and cell generation time. The experimental data (red circles) are from Schäkermann et al. [14], who varied generation times using different growth conditions and then quantified LpxC half-lives. The model data (black diamonds) were collected by varying the LpxC half-lives (and LpxC kcat) and then quantifying the generation times, defined here as the time required to produce 1 million lipid A molecules. Lines are least-difference best-fits to the data using the function y = c 1/x + c 2, primarily to guide the eye. (C) Effect of overexpressing LpxC on the LpxC half-life (black curve, left axis) and on the lipid A production rate, measured relative to the wild-type production rate (blue curve, right axis). The dashed line shows the wild-type condition using the LpxC translation rate from Table 1.
Fig 5
Fig 5. Overexpression of LpxK increases LpxC concentration.
(A) Lower row shows LpxK bands on an SDS-PAGE gel, arising from overexpression induced with the amount of IPTG shown at the top of each column. The upper row shows the resultant LpxC bands on a Western blot for the same induction levels. (B) Model prediction of LpxC overexpression arising from LpxK overexpression. The model was that shown in Fig 2 but with different LpxK enzyme counts, at steady-state.
Fig 6
Fig 6. Sensitivity of lipid A production rate on enzyme abundance.
(A) Black bars show enzyme control coefficients for the open-loop case, in which wild-type enzyme counts were assumed but FtsH regulation was disabled. Red bars show enzyme control coefficients for the closed-loop case, in which FtsH regulation was enabled. (B) Enzyme abundance reductions that led the model to produce 0.5 million lipid A molecules per cell generation for the open-loop (black bars) and closed-loop (red bars) cases.
Fig 7
Fig 7. WaaA regulation.
(A) The flux control coefficient of WaaA as a function of the CMP-KDO substrate concentration. This is for the open-loop case, in which wild-type enzyme counts were assumed but FtsH regulation was disabled. (B) The ratio of alternate lipid A to normal lipid A (KDO2-lipid A) as a function of the number of WaaA proteins. All parameters are the same as in Table 1, except that the WaaA proteolysis rate constant was changed in order to alter the WaaA degradation rate and hence the WaaA steady-state copy number. The maximum enzyme count shown arose from no FtsH mediated proteolysis. The dashed line indicates the wild-type count, from Table 1.

Similar articles

Cited by

References

    1. Raetz CR, Guan Z, Ingram BO, Six DA, Song F, Wang X, et al. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res. 2009; 50 Suppl: S103–8. 10.1194/jlr.R800060-JLR200 - DOI - PMC - PubMed
    1. Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem. 2014; 83: 99–128. 10.1146/annurev-biochem-060713-035600 - DOI - PubMed
    1. Nikaido H. Outer membrane In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin EC C, Low KB Jr, Magasanik B, et al. editors. Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. Washington DC: American Society for Microbiology; 1996. pp. 29–47.
    1. Walker SL, Redman JA, Elimelech M. Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir. 2004; 20(18): 7736–7746. - PubMed
    1. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71: 635–700. - PMC - PubMed

Publication types

Substances

LinkOut - more resources