Usage of neural network to predict aluminium oxide layer thickness
- PMID: 25922850
- PMCID: PMC4398957
- DOI: 10.1155/2015/253568
Usage of neural network to predict aluminium oxide layer thickness
Abstract
This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.
Figures




























References
-
- Baumeister J., Banhart J., Weber M. Aluminium foams for transport industry. Materials & Design. 1997;18(4–6):217–220. doi: 10.1016/s0261-3069(97)00050-2. - DOI
-
- Gombár M., Kmec J., Badida M., Sobotová L., Vagaská A., Michal P. The simulation of the temperature effects on the microhardness of anodic alumina oxide layers. Metalurgija. 2014;53(1):59–62.
-
- Badida M., Gombár M., Kmec J., Sobotová L., Vagaská A., Michal P. Štúdium vplyvu chemického zloženia elektrolytu na mikrotvrdosť vrstvy vytvorenej anodickou oxidáciou hliníka. Chemicke Listy. 2013;107:973–977.
-
- Salmalian K., Soleimani M. Modelling of energy absorption in square cross-section aluminum energy absorbers by hybrid ANFIS networks. International Journal of Mathematical Models and Methods in Applied Sciences. 2011;5(7):1154–1161.
-
- Michal P., Gombár M., Vagaská A., Piteľ J., Kmec J. Experimental study and modeling of the zinc coating thickness. Advanced Materials Research. 2013;712–715:382–386. doi: 10.4028/www.scientific.net/amr.712-715.382. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources