Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;36(7):750-8.
doi: 10.1016/j.placenta.2015.03.011. Epub 2015 Apr 11.

Maternal hypomagnesemia causes placental abnormalities and fetal and postnatal mortality

Affiliations

Maternal hypomagnesemia causes placental abnormalities and fetal and postnatal mortality

R N Schlegel et al. Placenta. 2015 Jul.

Abstract

Introduction: Magnesium (Mg(2+)) is essential for cellular growth and the maintenance of normal cellular processes. However, little is known about how maternal hypomagnesemia during pregnancy affects fetal growth and development. This study investigated the effects of maternal hypomagnesemia on the late gestation placenta and fetus, and postnatal outcomes until weaning.

Methods: Female CD1 mice consumed a control (0.2% w/w Mg(2+)), moderately Mg(2+) deficient (MMD; 0.02% w/w Mg(2+)) or severely Mg(2+) deficient (SMD; 0.005% w/w Mg(2+)) diet for 4 weeks prior to mating and throughout pregnancy. Dams were killed at E18.5 for embryonic studies or allowed to litter naturally and the offspring studied up to postnatal day 21.

Results: At E18.5, both Mg(2+) deficient diets decreased maternal plasma and bone Mg(2+) but only the SMD diet decreased fetal plasma Mg(2+). Maternal hypomagnesemia led to fetal loss and fetal growth restriction. Maternal Mg(2+) deficiency increased placental glycogen cell area and decreased spongiotrophoblast cell area while upregulating mRNA expression of the MagT1 Mg(2+) transporter in spongiotrophoblast cells. The SMD animals also displayed instances of gross placental abnormalities. After birth, pups in the SMD group had increased early postnatal mortality and failed to thrive. Pups in the MMD group underwent catch-up growth but remained shorter than controls at PN21 and were hypomagnesemic and hypoglycemic.

Conclusions: These changes suggest that maternal Mg(2+) deficiency during pregnancy impairs placental development and fetal growth, which may have long-term health consequences for offspring. Collectively, these results have important implications for women who are Mg(2+) deficient during pregnancy.

Keywords: Fetal growth restriction; Hypomagnesemia; Mg(2+) channels; Placental glycogen.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources