Phosphoryl Transfer Reaction Snapshots in Crystals: INSIGHTS INTO THE MECHANISM OF PROTEIN KINASE A CATALYTIC SUBUNIT
- PMID: 25925954
- PMCID: PMC4505467
- DOI: 10.1074/jbc.M115.643213
Phosphoryl Transfer Reaction Snapshots in Crystals: INSIGHTS INTO THE MECHANISM OF PROTEIN KINASE A CATALYTIC SUBUNIT
Abstract
To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca(2+) ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca(2+) cations with Mg(2+) ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. The present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date.
Keywords: crystal structure; enzyme mechanism; molecular dynamics; phosphoryl transfer; protein kinase.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures
References
-
- Manning G., Whyte D. B., Martinez R., Hunter T., Sudarsanam S. (2002) The protein kinase complement of the human genome. Science 298, 1912–1934 - PubMed
-
- Johnson D. A., Akamine P., Radzio-Andzelm E., Madhusudan M., Taylor S. S. (2001) Dynamics of cAMP-dependent protein kinase. Chem. Rev. 101, 2243–2270 - PubMed
-
- Adams J. A. (2001) Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101, 2271–2290 - PubMed
-
- Kim C., Cheng C. Y., Saldanha S. A., Taylor S. (2007) PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130, 1032–1043 - PubMed
-
- Armstrong R. N., Kondo H., Granot J., Kaiser E. T., Mildvan A. S. (1979) Magnetic resonance and kinetic studies of the manganese(II) ion and substrate complexes of the catalytic subunit of adenosine 3′,5′-monophosphate dependent protein kinase from bovine heart. Biochemistry 18, 1230–1238 - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
