Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2014 Nov 18;16(6):467.
doi: 10.1186/s13058-014-0467-x.

A novel mechanism of regulation of the anti-metastatic miR-31 by EMSY in breast cancer

Affiliations
Comment

A novel mechanism of regulation of the anti-metastatic miR-31 by EMSY in breast cancer

Laoighse Mulrane et al. Breast Cancer Res. .

Abstract

miR-31 is well known as an anti-metastatic microRNA (miRNA) in the context of breast cancer. However, to date the mechanism of regulation of this miRNA has yet to be elucidated. The recent publication by Viré et al. in Molecular Cell demonstrates for the first time that one mechanism of regulation of miR-31 is through the putative oncogene EMSY, whose amplification in breast cancer patients correlates with reduced expression of the miRNA. This regulation is dependent on the DNA-binding transcription factor ETS-1 which recruits EMSY and the histone demethylase KDM5B to the miR-31 promoter, thus repressing its transcription.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Proposed mechanism of regulation of miR-31 in breast cancer (adapted from [[7]]). ETS-1 recruits oncogene EMSY and H3K4me3 demethylase KDM5B to the promoter of miR-31, repressing transcription of the pri-miRNA.

Comment on

References

    1. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–1046. doi: 10.1016/j.cell.2009.03.047. - DOI - PMC - PubMed
    1. Valastyan S, Benaich N, Chang A, Reinhardt F, Weinberg RA. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009;23:2592–2597. doi: 10.1101/gad.1832709. - DOI - PMC - PubMed
    1. Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, Plow EF. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer. 2011;129:1331–1343. doi: 10.1002/ijc.25793. - DOI - PMC - PubMed
    1. Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res. 2010;70:5147–5154. doi: 10.1158/0008-5472.CAN-10-0410. - DOI - PMC - PubMed
    1. Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA. Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev. 2011;25:646–659. doi: 10.1101/gad.2004211. - DOI - PMC - PubMed

Publication types