Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 May 1;17(1):63.
doi: 10.1186/s13058-015-0525-z.

Benefits and harms of mammography screening

Affiliations
Review

Benefits and harms of mammography screening

Magnus Løberg et al. Breast Cancer Res. .

Abstract

Mammography screening for breast cancer is widely available in many countries. Initially praised as a universal achievement to improve women's health and to reduce the burden of breast cancer, the benefits and harms of mammography screening have been debated heatedly in the past years. This review discusses the benefits and harms of mammography screening in light of findings from randomized trials and from more recent observational studies performed in the era of modern diagnostics and treatment. The main benefit of mammography screening is reduction of breast-cancer related death. Relative reductions vary from about 15 to 25% in randomized trials to more recent estimates of 13 to 17% in meta-analyses of observational studies. Using UK population data of 2007, for 1,000 women invited to biennial mammography screening for 20 years from age 50, 2 to 3 women are prevented from dying of breast cancer. All-cause mortality is unchanged. Overdiagnosis of breast cancer is the main harm of mammography screening. Based on recent estimates from the United States, the relative amount of overdiagnosis (including ductal carcinoma in situ and invasive cancer) is 31%. This results in 15 women overdiagnosed for every 1,000 women invited to biennial mammography screening for 20 years from age 50. Women should be unpassionately informed about the benefits and harms of mammography screening using absolute effect sizes in a comprehensible fashion. In an era of limited health care resources, screening services need to be scrutinized and compared with each other with regard to effectiveness, cost-effectiveness and harms.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Summary of benefits and harms when 1,000 women are screened every second years for 20 years starting at age 50. Number of women with false positive mammograms and false positive biopsies are based on a review [32]. Number of interval cancers are based on reported number of interval cancer in the National Health Service breast screening programme [33]. The numbers of overdiagnosed and prevented breast cancer deaths are estimated based on 31% overdiagnosis [19] and 13 to 17% reduction in mortality from breast cancer [35]. These relative numbers are applied to the observed incidence of invasive breast cancer (women aged 50 to 69 years) and mortality (women aged 55 to 74 years) in the UK in 2007 [32]; this resulted in 15 overdiagnosed women and 2 to 3 prevented breast cancer deaths per 1,000 women. No deaths are prevented overall [9].
Figure 2
Figure 2
Scenarios for different outcomes of screening mammography. (A) Screening is ineffective. (B) Screening is effective. (C) Screening leads to overdiagnosis. (D) Screening leads to overdiagnosis that causes death from side effects of treatment.
Figure 3
Figure 3
Different estimates of overdiagnosed women and saved lives from breast cancer in different meta-analyses and trials. Euroscreen: estimates derived from a review of observational studies, where estimates of mortality reduction from case–control studies are included [32]. UK Independent review: estimates on relative effect derived from randomized trials of mammography screening and applied to UK national rates for women aged 55 to 79 years [22]. UK Observational: estimates based on 31% overdiagnosis [19] and 13 to 17% reduction in mortality from breast cancer [35] and applied to the observed incidence of invasive breast cancer (women aged 50 to 69 years) and mortality (women aged 55 to 74 years) in the UK in 2007 [34]; this resulted in 2 to 3 prevented deaths from breast cancer. Cochrane review: estimates from the randomized trials of mammography screening [9]. The Cochrane review does not assume the effect of mammography screening to last for 20 years as is assumed in the other estimates, but relates to what was observed in the randomized trials [9].
Figure 4
Figure 4
Benefit and harm with screening mammography and use of aspirin over 10 years [ 62 ] . Shown are the 10-year risk of death from breast cancer (bars above 0) and the 10-year risk of the diagnosis of breast cancer (bars below 0) among women aged 40 years and 50 years, with and without mammography screening. Also shown are the 10-year risk of death from cancer (bar above 0) and the 10-year risk of major extracranial bleeding, defined as bleeding necessitating transfusion or resulting in death (bar below 0), associated with the use or non-use of aspirin as a primary preventive measure (on the basis of findings from randomized trials). In each pair (no screening versus screening and no aspirin versus aspirin), the difference between the percentages represented by the bars shows the absolute benefit or harm associated with screening mammography or the use of aspirin. Background data are derived from the literature.
Figure 5
Figure 5
Twenty year risk for diagnosis of, and death from, breast and prostate cancer with and without screening in the United Kingdom [ 49 ] . Displayed are 20-year absolute risks for incidence (including overdiagnosis) and mortality with and without screening. Overdiagnosis is set to 45% for prostate cancer and 22% for breast cancer, respectively (age 50 to 69 years). Mortality reduction is set to be 20% for both cancers (age 55 and 74 years). For prostate cancer, the estimates are based on the observed incidence and mortality in 1998 (before any widespread use of prostate-specific antigen (PSA)) and for breast cancer in 2007 (latest data available).
Figure 6
Figure 6
Positive framing. Out of 1,000 women aged 50 to 69 years invited every second year, 781 are alive with screening and the same number without screening over the course of 20 years. Correspondingly, 985 women and 982 to 983 women without screening will not die of breast cancer aged 55 to 74 years. Negative framing: out of 1,000 women aged 50 to 69 years invited every second year, 204 women will die with screening and the same number without screening. Correspondingly, 15 women with screening and 17 to 18 women without screening will die of breast cancer between 55 and 74 years old. Number of women dying among women aged 55 to 74 years is based on the observed mortality rates in England and Wales in 2007 [68]. The number of women dying over a 20-year period is estimated by summing the mortality rates for the ages 55 to 74 [68].

References

    1. Shorter Oxford English Dictionary. Oxford, United Kingdom: Oxford University Press; 2010
    1. Raffle AE, Gray JAM. Screening: Evidence and Practice. Oxford, United Kingdom: Oxford University Press; 2007.
    1. Holland WW, Stewart S. Screening in Disease Prevention. What works? Oxford, United Kingdom: The Nuttfield Trust/Radcliffe Publishing Ltd; 2005.
    1. Bretthauer M, Kalager M. Principles, effectiveness and caveats in screening for cancer. Br J Surg. 2013;100:55–65. doi: 10.1002/bjs.8995. - DOI - PubMed
    1. Wilson JMG, Junger G. Principles and Practice of Screening for Disease. Geneva, Switzerland: WHO; 1968.

Publication types