Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug:79:49-55.
doi: 10.1016/j.ijbiomac.2015.04.046. Epub 2015 Apr 29.

The effects of ginsenosides to amyloid fibril formation by RCMκ-casein

Affiliations

The effects of ginsenosides to amyloid fibril formation by RCMκ-casein

Jihua Liu et al. Int J Biol Macromol. 2015 Aug.

Abstract

When not incorporated into the casein micelle, isolated κ-casein spontaneously forms amyloid fibrils under physiological conditions, and is a convenient model for researching generic aspects of fibril formation. Ginsenosides have recently attracted much research interest because of the effects on aging diseases, which are always associated with amyloid fibril formation, for example, Alzheimer's, Parkinson's, and Huntington's diseases. In addition, the mechanism remains unclear that ginsenosides exert the effects against aging diseases. To address these aspects, we have investigated the ability of ginsenoside Rb1, Rc, Rg1, and Re influencing fibril formation by RCMκ-casein (reduced and carboxymethylated κ-casein), with the methods of Thioflavin T fluorescence assay, transmission electron microscopy (TEM), and intrinsic fluorescence spectroscopy. The results showed that ginsenoside Rb1 and Rg1 inhibited obviously RCMκ-CN fibrillation in both the initial rate and final level of ThT fluorescence. On the contrary, ginsenoside Re had a few effect on promoting RCMκ-CN fibril formation, proved by thick and larger fibrils observed frequently in TEM. While Rc did not influence RCMκ-CN fibrillation. It is demonstrated that Rg1 prevent RCMκ-CN fibril formation by stabilising RCMκ-CN in its native like state. Additional chemical structure difference of ginsenosides and the effects on fibril formation are also implicated.

Keywords: Amyloid fibrils; Ginsenosides; TEM; ThT assay; κ-Casein.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources