Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 6;10(5):e0125401.
doi: 10.1371/journal.pone.0125401. eCollection 2015.

Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms

Affiliations

Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms

Marcel Jonges et al. PLoS One. .

Abstract

Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Endotoxin concentrations in air samples outside poultry barns are depicted in relation to the distance from the poultry barn, illustrating a reduction of airborne endotoxin with increasing distance from the source.
Fig 2
Fig 2. Dispersion of particulate matter around poultry farms, based on field measurements of endotoxin concentrations in air samples and OPS-ST particulate matter modeling.
A) Maps illustrating the air sampling locations together with the atmospheric dispersion of particulate matter (relative to the source) that was modeled using meteorological data corresponding with the day and timeframe (10:00AM—16:00PM) of air sampling. B) Scatterplot of modeled dispersion and measured endotoxin concentration. Qualitative results of influenza virus RNA and turkey cell DNA detection are depicted as well.

References

    1. Swayne DE. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian diseases. 2007;51(1 Suppl):242–9. Epub 2007/05/15. PubMed . - PubMed
    1. Stallknecht DE, Brown JD. Tenacity of avian influenza viruses. Rev Sci Tech. 2009;28(1):59–67. PubMed . - PubMed
    1. Spickler AR, Trampel DW, Roth JA. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian pathology: journal of the WVPA. 2008;37(6):555–77. 10.1080/03079450802499118 PubMed . - DOI - PubMed
    1. Lu H, Castro AE, Pennick K, Liu J, Yang Q, Dunn P, et al. Survival of avian influenza virus H7N2 in SPF chickens and their environments. Avian diseases. 2003;47(3 Suppl):1015–21. PubMed . - PubMed
    1. Reis A, Stallknecht D, Ritz C, Garcia M. Tenacity of low-pathogenic avian influenza viruses in different types of poultry litter. Poultry science. 2012;91(8):1745–50. 10.3382/ps.2011-01625 PubMed . - DOI - PubMed

Publication types

Substances