Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015;38(5):669-73.
doi: 10.1248/bpb.b15-00060.

Diacylglycerol Signaling Pathway in Pancreatic β-Cells: An Essential Role of Diacylglycerol Kinase in the Regulation of Insulin Secretion

Affiliations
Free article
Review

Diacylglycerol Signaling Pathway in Pancreatic β-Cells: An Essential Role of Diacylglycerol Kinase in the Regulation of Insulin Secretion

Yukiko K Kaneko et al. Biol Pharm Bull. 2015.
Free article

Abstract

Diacylglycerol (DAG) is a lipid signal messenger and plays a physiological role in β-cells. Since defective glucose homeostasis increases de novo DAG synthesis, DAG may also contribute to β-cell dysfunction in type 2 diabetes. Although the primary function of DAG is to activate protein kinase C (PKC), the role of PKC in insulin secretion is controversial: PKC has been reported to act as both a positive and negative regulator of insulin secretion. In addition to the PKC pathway, DAG has also been shown to mediate other pathways such as the Munc-13-dependent pathway in β-cells. The intracellular levels of DAG are strictly regulated by diacylglycerol kinase (DGK); however, the role of DGK in β-cells and their involvement in β-cell failure in type 2 diabetes remain to be fully elucidated. We have recently reported the roles of type I DGK, DGKα and γ, in insulin secretion from β-cells. DGKα and γ were activated by glucose or high K(+) stimulation in β-cells, and the inhibition of the DGKs by a type I DGK inhibitor or by knockdown with small interfering RNA (siRNA) decreased insulin secretion. Thus, DGKα and γ are suggested to be activated in response to elevated [Ca(2+)]i in β-cells and to act as positive regulators of insulin secretion. In this article, we review the current understanding of the roles of DAG and DGK in β-cell function and their involvement in the development of β-cell dysfunction in type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types