Aging, glucocorticoids and developmental programming
- PMID: 25953670
- PMCID: PMC4424198
- DOI: 10.1007/s11357-015-9774-0
Aging, glucocorticoids and developmental programming
Abstract
Glucocorticoids are pleiotropic regulators of multiple cell types with critical roles in physiological systems that change across the life-course. Although glucocorticoids have been associated with aging, available data on the aging trajectory in basal circulating glucocorticoids are conflicting. A literature search reveals sparse life-course data. We evaluated (1) the profile of basal circulating corticosterone across the life-course from weaning (postnatal day-PND 21), young adult PND 110, adult PND 450, mature adult PND 650 to aged phase PND 850 in a well-characterized homogeneous rat colony to determine existence of significant changes in trajectory in the second half of life; (2) sex differences; and (3) whether developmental programming of offspring by exposure to maternal obesity during development alters the later-life circulating corticosterone trajectory. We identified (1) a fall in corticosterone between PND 450 and 650 in both males and females (p < 0.05) and (2) higher female than male concentrations (p < 0.05). (3) Using our five life-course time-point data set, corticosterone fell at a similar age but from higher levels in male and female offspring of obese mothers. In all four groups studied, there was a second half of life fall in corticosterone. Higher corticosterone levels in offspring of obese mothers may play a role in their shorter life-span, but the age-associated fall occurs at a similar time to control offspring. Although even more life-course time-points would be useful, a five life-course time-point analysis provides important new information on normative and programmed aging of circulating corticosterone.
Figures


References
-
- Bergendahl M, Iranmanesh A, Mulligan T, Veldhuis JD. Impact of age on cortisol secretory dynamics basally and as driven by nutrient-withdrawal stress. J Clin Endocrinol Metab. 2000;85:2203–2214. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical