Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions
- PMID: 25955211
- DOI: 10.1016/j.cmet.2015.04.006
Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions
Abstract
The mitochondrial inner membrane is highly folded and displays a complex molecular architecture. Cristae junctions are highly curved tubular openings that separate cristae membrane invaginations from the surrounding boundary membrane. Despite their central role in many vital cellular processes like apoptosis, the details of cristae junction formation remain elusive. Here we identify Mic10, a core subunit of the recently discovered MICOS complex, as an inner mitochondrial membrane protein with the ability to change membrane morphology in vitro and in vivo. We show that Mic10 spans the inner membrane in a hairpin topology and that its ability to sculpt membranes depends on oligomerization through a glycine-rich motif. Oligomerization mutants fail to induce curvature in model membranes, and when expressed in yeast, mitochondria display an altered inner membrane architecture characterized by drastically decreased numbers of cristae junctions. Thus, we demonstrate that membrane sculpting by Mic10 is essential for cristae junction formation.
Copyright © 2015 Elsevier Inc. All rights reserved.
Comment in
-
Mic10 Oligomerization Pinches off Mitochondrial Cristae.Cell Metab. 2015 May 5;21(5):660-1. doi: 10.1016/j.cmet.2015.04.020. Cell Metab. 2015. PMID: 25955201 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
