Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease
- PMID: 25959145
- PMCID: PMC5003780
- DOI: 10.1002/oby.21059
Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease
Abstract
Objective: To explore the transcriptome of epicardial adipose tissue (EAT) as compared to subcutaneous adipose tissue (SAT) and its modifications in a small number of patients with coronary artery disease (CAD) versus valvulopathy.
Methods: SAT and EAT samples were obtained during elective cardiothoracic surgeries. The transcriptome of EAT was evaluated, as compared to SAT, using an unbiased, whole-genome approach in subjects with CAD (n = 6) and without CAD (n = 5), where the patients without CAD had cardiac valvulopathy.
Results: Relative to SAT, EAT is a highly inflammatory tissue enriched with genes involved in endothelial function, coagulation, immune signaling, potassium transport, and apoptosis. EAT is lacking in expression of genes involved in protein metabolism, tranforming growth factor-beta (TGF-beta) signaling, and oxidative stress. Although underpowered, in subjects with severe CAD, there is an expression trend suggesting widespread downregulation of EAT encompassing a diverse group of gene sets related to intracellular trafficking, proliferation/transcription regulation, protein catabolism, innate immunity/lectin pathway, and ER stress.
Conclusions: The EAT transcriptome is unique when compared to SAT. In the setting of CAD versus valvulopathy, there is possible alteration of the EAT transcriptome with gene suppression. This pilot study explores the transcriptome of EAT in CAD and valvulopathy, providing new insight into its physiologic and pathophysiologic roles.
© 2015 The Obesity Society.
Conflict of interest statement
Statement The authors declare no conflicts of interest.
Figures
References
-
- Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11:304–310. - PubMed
-
- Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B. 1989;94:225–232. - PubMed
-
- Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536–543. - PubMed
-
- Bambace C, Telesca M, Zoico E, Sepe A, Olioso D, Rossi A, et al. Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc Pathol. 2011;20:e153–156. - PubMed
-
- Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–2466. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
