Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun 1;20(8):1190-233.
doi: 10.2741/4367.

Gene and splicing therapies for neuromuscular diseases

Affiliations
Free article
Review

Gene and splicing therapies for neuromuscular diseases

Rachid Benchaouir et al. Front Biosci (Landmark Ed). .
Free article

Abstract

Neuromuscular disorders (NMD) are heterogeneous group of genetic diseases characterized by muscle weakness and wasting. Duchenne Muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) are two of the most common and severe forms in humans and although the molecular mechanisms of these diseases have been extensively investigated, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies and RNA-based technology. Whilst proof of principle have been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense mediated exon skipping has shown encouraging results and hold promise for the treatment of dystrophic muscle. In this review, we summarize the recent progress of therapeutic approaches to neuromuscular diseases, with an emphasis on gene therapy and splicing modulation for DMD and SMA, focusing on the advantages offered by these technologies but also their challenges.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources