Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr 24:9:153.
doi: 10.3389/fncel.2015.00153. eCollection 2015.

Stim and Orai proteins in neuronal Ca(2+) signaling and excitability

Affiliations
Review

Stim and Orai proteins in neuronal Ca(2+) signaling and excitability

Francesco Moccia et al. Front Cell Neurosci. .

Abstract

Stim1 and Orai1 are ubiquitous proteins that have long been known to mediate Ca(2+) release-activated Ca(2+) (CRAC) current (ICRAC) and store-operated Ca(2+) entry (SOCE) only in non-excitable cells. SOCE is activated following the depletion of the endogenous Ca(2+) stores, which are mainly located within the endoplasmic reticulum (ER), to replete the intracellular Ca(2+) reservoir and engage specific Ca(2+)-dependent processes, such as proliferation, migration, cytoskeletal remodeling, and gene expression. Their paralogs, Stim2, Orai2 and Orai3, support SOCE in heterologous expression systems, but their physiological role is still obscure. Ca(2+) inflow in neurons has long been exclusively ascribed to voltage-operated and receptor-operated channels. Nevertheless, recent work has unveiled that Stim1-2 and Orai1-2, but not Orai3, proteins are also expressed and mediate SOCE in neurons. Herein, we survey current knowledge about the neuronal distribution of Stim and Orai proteins in rodent and human brains; we further discuss that Orai2 is the main pore-forming subunit of CRAC channels in central neurons, in which it may be activated by either Stim1 or Stim2 depending on species, brain region and physiological stimuli. We examine the functions regulated by SOCE in neurons, where this pathway is activated under resting conditions to refill the ER, control spinogenesis and regulate gene transcription. Besides, we highlighted the possibility that SOCE also controls neuronal excitation and regulate synaptic plasticity. Finally, we evaluate the involvement of Stim and Orai proteins in severe neurodegenerative and neurological disorders, such as Alzheimer's disease and epilepsy.

Keywords: Ca2+ signaling; Orai1; Orai2; STIM1; STIM2; neurons; store-operated Ca2+ entry.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
The neuronal Ca2+ signalling toolkit. Neuronal Ca2+ signals are shaped by the interaction between Ca2+ inflow from the outside and Ca2+ mobilization from the endoplasmic reticulum (ER), their most abundant endogenous Ca2+ pool. At excitatory synapses, the signaling cascade is initiated when glutamate is released into the synaptic cleft. Glutamate binds to receptor-operated channels, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs), and to metabotropic receptors, such as type 1 metabotropic glutamate receptors (mGluR1). AMPAR gates Na+ entry, thereby causing the excitatory postsynaptic potential (EPSP) that removes the Mg2+ block from NMDAR , enabling it to open in response to Glu and to mediate Ca2+ inflow. Moreover, the EPSP recruits an additional pathway for Ca2+ entry by activating voltage-operated Ca2+ channels (VOCCs). Outside the postsynaptic density is located mGluR1, that is coupled to PLCb by a trimeric Gq protein and, therefore, leads to inositol-1,4,5-trisphosphate (InsP3) synthesis. InsP3, in turn, induces Ca2+ release from ER by binding to and gating the so-called InsP3 receptors (InsP3Rs). ER-dependent Ca2+ discharge also involves ryanodine receptors (RyRs) which are activated by Ca2+ delivered either by adjoining InsP3Rs or by plasmalemmal VOCs or NMDARs according to the process of Ca2+-induced Ca2+ release (CICR). An additional route for Ca2+ influx is provided by store-operated Ca2+ entry, which is mediated by the interaction between the ER Ca2+-sensors, Stim1 and Stim2, and the Ca2+-permeable channels, Orai1 and Orai2. As more extensively illustrated in the text, depending on the species (rat, mouse, or human) and on the brain region (cortex, hippocampus, or cerebellum), Stim and Orai isoforms interact to mediate Ca2+ entry either in the presence or in the absence of synaptic activity to ensure adequate replenishment of ER Ca2+ loading and engage in Ca2+-sensitive decoders.
FIGURE 2
FIGURE 2
Topology and predicted domains of Stim1 and Orai1. (A) Stim1 comprises a signal peptide (Sig), a canonical EF-hand (cEF) domain, a hidden EF (hEF) domain, a sterile alpha motif (SAM), a transmembrane domain (TM), three coiled-coil domains (CC1, CC2, CC3), CAD, SOAR, serine/proline-rich domain (S/P), and lysine-rich domain (K-rich). (B) Each Orai1 monomer consists of four transmembrane domains (TM1TM4) and presents CAD binding domains in the cytosolic NH2 and COOH termini. E106 is the residue crucial for conferring Ca2+-selectivity to the channel pore.
FIGURE 3
FIGURE 3
Current model of the mechanistic coupling between Stim1 and Orai1. In the absence of extracellular stimulation, Stim1 is uniformly distributed throughout ER membrane. Upon agonist (in this case, glutamate or Glu)-dependent PLCb activation, InsP3 is produced thereby depleting the InsP3-sensitive Ca2+ stores. Consequently, Ca2+ dissociates from Stim1 NH2-terminal cEF domain, resulting in SAM-mediate Stim1 oligomerization and translocation into punctate clusters in regions closely apposed to the plasma membrane. Herein, Stim1 binds to and gates Orai1 through physical interaction between, respectively, their CC domains (CC2 and CC3) and CAD binding domains, thereby activating SOCE.

References

    1. Abdullaev I. F., Bisaillon J. M., Potier M., Gonzalez J. C., Motiani R. K., Trebak M. (2008). Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ. Res. 103 1289–1299 10.1161/01.RES.0000338496.95579.56 - DOI - PMC - PubMed
    1. Baba A., Yasui T., Fujisawa S., Yamada R. X., Yamada M. K., Nishiyama N., et al. (2003). Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J. Neurosci. 23 7737–7741. - PMC - PubMed
    1. Bandyopadhyay B. C., Pingle S. C., Ahern G. P. (2011). Store-operated Ca2+ signaling in dendritic cells occurs independently of STIM1. J. Leukoc. Biol. 89 57–62 10.1189/jlb.0610381 - DOI - PMC - PubMed
    1. Beech D. J. (2009). Harmony and discord in endothelial calcium entry. Circ. Res. 104 E22–E23 10.1161/CIRCRESAHA.108.191338 - DOI - PMC - PubMed
    1. Berna-Erro A., Braun A., Kraft R., Kleinschnitz C., Schuhmann M. K., Stegner D., et al. (2009). STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci. Signal. 2 ra67. 10.1126/scisignal.2000522 - DOI - PubMed

LinkOut - more resources