Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug;56(4):988-998.
doi: 10.1007/s12031-015-0568-8. Epub 2015 May 13.

Poloxamer 188 Attenuates Cerebral Hypoxia/Ischemia Injury in Parallel with Preventing Mitochondrial Membrane Permeabilization and Autophagic Activation

Affiliations

Poloxamer 188 Attenuates Cerebral Hypoxia/Ischemia Injury in Parallel with Preventing Mitochondrial Membrane Permeabilization and Autophagic Activation

Chengliang Luo et al. J Mol Neurosci. 2015 Aug.

Abstract

While the previous studies have shown poloxamer 188 (P188)'s neuroprotection in cultured HT22 cells under oxygen-glucose deprivation (OGD) insults, we investigated whether P188 is a potential neuroprotective agent in primary cortical neurons (PCNs) and in cerebral ischemia in vivo and whether the possible underlying mechanisms correlate with regulating mitochondrial membrane permeability (MMP) and autophagy. The protective effects of P188 were tested in PCNs in vitro exposed to OGD, as well as in cerebral ischemia in vivo. Cell death and viability were detected with LDH and MTT assay, and mitochondrial membrane potential was assessed using fluorescence microscopy. The apoptosis and autophagy of PCNs were investigated by expressions of cyt-c, caspase-3, light chain 3 (LC3), and Beclin-1. In addition, a mouse middle cerebral artery occlusion (MCAO) model was used to produce focal ischemia, and mice were treated with P188 and rapamycin after MCAO 10 min. The infarct volume, neurological scores, and phosphorylation of mammalian target of rapamycin (mTOR) were evaluated. The in vitro results showed that P188 prevented OGD-induced primary cerebrocortical neuron death and inhibited loss of mitochondrial membrane potential, the release of mitochondrial apoptogenic factor cytochrome c from mitochondria to the cytoplasm, and activation of caspase-3. P188 suppressed the activation of autophagy by decreasing LC3-II and Beclin-1 levels under OGD accordingly. Moreover, the in vivo results showed that P188 and rapamycin remarkably reduced the infarct volume and neurological deficits in the MCAO mouse model of cerebral ischemia, respectively. Both P188 and rapamycin induced phosphorylation of mTOR and reversed the decreased level upon MCAO. These data indicate that P188 prevents neuronal cell death resulting from ischemic brain injury and that its neuroprotective effects are mediated by preventing mitochondrial membrane integrity damage and autophagic activation. Given that it has low toxicity, P188 might become a potential novel therapy for ischemic injury.

PubMed Disclaimer

References

    1. Behav Brain Res. 2011 Dec 1;225(2):603-9 - PubMed
    1. J Neurosci Res. 2010 Oct;88(13):2847-58 - PubMed
    1. J Neurotrauma. 2012 Mar 20;29(5):776-88 - PubMed
    1. Blood. 2000 Jul 15;96(2):569-76 - PubMed
    1. Cell Death Differ. 2008 Jul;15(7):1113-23 - PubMed

Publication types

LinkOut - more resources