Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 1;54(11):5285-94.
doi: 10.1021/acs.inorgchem.5b00233. Epub 2015 May 13.

Design of a Catalytic Active Site for Electrochemical CO2 Reduction with Mn(I)-Tricarbonyl Species

Affiliations

Design of a Catalytic Active Site for Electrochemical CO2 Reduction with Mn(I)-Tricarbonyl Species

Jay Agarwal et al. Inorg Chem. .

Abstract

The design, synthesis, and assessment of a new manganese-centered catalyst for the electrochemical reduction of CO2 is described. The reported species, MnBr(6-(2-hydroxyphenol)-2,2'-bipyridine)(CO)3, includes a ligand framework with a phenolic proton in close proximity to the CO2 binding site, which allows for facile proton-assisted C-O bond cleavage. As a result of this modification, seven times the electrocatalytic current enhancement is observed compared to MnBr(2,2'-bipyridine)(CO)3. Moreover, reduction is possible at only 440 mV of overpotential. Theoretical computations suggest that the entropic contribution to the activation free energy is partially responsible for the increased catalytic activity. Experimental work, including voltammetry and product quantification from controlled potential electrolysis, suggests a key mechanistic role for the phenolic proton in the conversion of CO2 to CO.

PubMed Disclaimer

LinkOut - more resources