Proteomic profiling of high risk medulloblastoma reveals functional biology
- PMID: 25970789
- PMCID: PMC4546489
- DOI: 10.18632/oncotarget.3927
Proteomic profiling of high risk medulloblastoma reveals functional biology
Abstract
Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.
Keywords: cMYC; cancer; glycolysis; medulloblastoma; proteomics.
Conflict of interest statement
The authors have no conflicts of interest to disclose.
Figures
References
-
- Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM. Molecular subgroups of medulloblastoma: the current consensus. Acta neuropathologica. 2012;123:465–472. - PMC - PubMed
-
- Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011;29:1424–1430. - PMC - PubMed
-
- Pizer B, Donachie PH, Robinson K, Taylor RE, Michalski A, Punt J, Ellison DW, Picton S. Treatment of recurrent central nervous system primitive neuroectodermal tumours in children and adolescents: results of a Children's Cancer and Leukaemia Group study. Eur J Cancer. 2011;47:1389–1397. - PubMed
-
- Ramaswamy V, Remke M, Bouffet E, Faria CC, Perreault S, Cho YJ, Shih DJ, Luu B, Dubuc AM, Northcott PA, Schuller U, Gururangan S, McLendon R, Bigner D, Fouladi M, Ligon KL, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. The Lancet Oncology. 2013;14:1200–1207. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
