Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 15;34(1):45.
doi: 10.1186/s13046-015-0150-9.

ERRγ target genes are poor prognostic factors in Tamoxifen-treated breast cancer

Affiliations

ERRγ target genes are poor prognostic factors in Tamoxifen-treated breast cancer

Subha Madhavan et al. J Exp Clin Cancer Res. .

Abstract

Background: One-third of estrogen (ER+) and/or progesterone receptor-positive (PGR+) breast tumors treated with Tamoxifen (TAM) do not respond to initial treatment, and the remaining 70% are at risk to relapse in the future. Estrogen-related receptor gamma (ESRRG, ERRγ) is an orphan nuclear receptor with broad, structural similarities to classical ER that is widely implicated in the transcriptional regulation of energy homeostasis. We have previously demonstrated that ERRγ induces resistance to TAM in ER+ breast cancer models, and that the receptor's transcriptional activity is modified by activation of the ERK/MAPK pathway. We hypothesize that hyper-activation or over-expression of ERRγ induces a pro-survival transcriptional program that impairs the ability of TAM to inhibit the growth of ER+ breast cancer. The goal of the present study is to determine whether ERRγ target genes are associated with reduced distant metastasis-free survival (DMFS) in ER+ breast cancer treated with TAM.

Methods: Raw gene expression data was obtained from 3 publicly available breast cancer clinical studies of women with ER+ breast cancer who received TAM as their sole endocrine therapy. ERRγ target genes were selected from 2 studies that published validated chromatin immunoprecipitation (ChIP) analyses of ERRγ promoter occupancy. Kaplan-Meier estimation was used to determine the association of ERRγ target genes with DMFS, and selected genes were validated in ER+, MCF7 breast cancer cells that express exogenous ERRγ.

Results: Thirty-seven validated receptor target genes were statistically significantly altered in women who experienced a DM within 5 years, and could classify several independent studies into poor vs. good DMFS. Two genes (EEF1A2 and PPIF) could similarly separate ER+, TAM-treated breast tumors by DMFS, and their protein levels were measured in an ER+ breast cancer cell line model with exogenous ERRγ. Finally, expression of ERRγ and these two target genes are elevated in models of ER+ breast cancer with hyperactivation of ERK/MAPK.

Conclusions: ERRγ signaling is associated with poor DMFS in ER+, TAM-treated breast cancer, and ESRRG, EEF1A2, and PPIF comprise a 3-gene signaling node that may contribute to TAM resistance in the context of an active ERK/MAPK pathway.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Selected clinical studies have similar proportions of distant metastasis-free survival (DMFS). Survival data were plotted using the Kaplan-Meier estimator, which show non-significant differences in DMFS data amongst the 3 studies. Log-rank p = 0.09.
Figure 2
Figure 2
ERRγ and its target genes predict poor DMFS in ER+, but not ER-, breast cancer. Gene symbols for 35 of the 37 ERR target DEGs (2 were not annotated) were entered into KM Plotter and used to classify DMFS data from women with ER+, TAM-treated breast cancer (A, n = 504, HR = 1.75, log-rank p = 0.006) or ER-, chemotherapy-treated breast cancer (B, n = 53, HR = 0.35, log-rank p = 0.024).
Figure 3
Figure 3
Predictive value and expression of ERRγ target genes EEF1A2 and PPIF in ER+ breast cancer. A, The 3-gene signature of ESRRG, EEF1A2, and PPIF predicts poor DMFS in ER+, TAM-treated breast cancer using KM Plotter (n = 504, HR = 1.57, log-rank p = 0.022). B, Expression of EEF1A2 and PPIF protein in MCF7 cells transiently expressing exogenous hemagglutinin (HA-) tagged ERRγ. β-actin serves as the loading control. Relative expression of EEF1A2 (1.57) and PPIF (1.07) in ERRγ-transfected cells vs. empty vector control (1.0) was analyzed using NIH Image J.
Figure 4
Figure 4
Expression of ESRRG, EEF1A2, and PPIF correlates with ERK/MAPK activation status in ER+ breast cancer cells. Gene expression data from Rae et al. obtained from ONCOMINE were analyzed for ESRRG (A), EEF1A2 (B), and PPIF (C) in n = 3 replicates per cell line. Mann Whitney rank-sum p < 0.05 (*).

Similar articles

Cited by

References

    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107. - DOI - PubMed
    1. Ebctcg: Early Breast Cancer Trialists’ Collaborative Group Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet. 1998;351:1451–67. doi: 10.1016/S0140-6736(97)11423-4. - DOI - PubMed
    1. Ebctcg: Early Breast Cancer Trialists Collaborative Group Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. Lancet. 1992;399:1–15. - PubMed
    1. Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T, et al. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer 1. N Engl J Med. 2004;350(11):1081–92. doi: 10.1056/NEJMoa040331. - DOI - PubMed
    1. Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–57. doi: 10.1056/NEJMoa052258. - DOI - PubMed

Publication types

MeSH terms