Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies
- PMID: 25972002
- DOI: 10.1126/scitranslmed.aaa4802
Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies
Abstract
Bispecific antibodies and antibody fragments in various formats have been explored as a means to recruit cytolytic T cells to kill tumor cells. Encouraging clinical data have been reported with molecules such as the anti-CD19/CD3 bispecific T cell engager (BiTE) blinatumomab. However, the clinical use of many reported T cell-recruiting bispecific modalities is limited by liabilities including unfavorable pharmacokinetics, potential immunogenicity, and manufacturing challenges. We describe a B cell-targeting anti-CD20/CD3 T cell-dependent bispecific antibody (CD20-TDB), which is a full-length, humanized immunoglobulin G1 molecule with near-native antibody architecture constructed using "knobs-into-holes" technology. CD20-TDB is highly active in killing CD20-expressing B cells, including primary patient leukemia and lymphoma cells both in vitro and in vivo. In cynomolgus monkeys, CD20-TDB potently depletes B cells in peripheral blood and lymphoid tissues at a single dose of 1 mg/kg while demonstrating pharmacokinetic properties similar to those of conventional monoclonal antibodies. CD20-TDB also exhibits activity in vitro and in vivo in the presence of competing CD20-targeting antibodies. These data provide rationale for the clinical testing of CD20-TDB for the treatment of CD20-expressing B cell malignancies.
Copyright © 2015, American Association for the Advancement of Science.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases