Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul 16;48(10):1868-75.
doi: 10.1016/j.jbiomech.2015.04.031. Epub 2015 May 1.

Patient-specific numerical simulation of stent-graft deployment: Validation on three clinical cases

Affiliations
Free article

Patient-specific numerical simulation of stent-graft deployment: Validation on three clinical cases

David Perrin et al. J Biomech. .
Free article

Abstract

Endovascular repair of abdominal aortic aneurysms faces some adverse outcomes, such as kinks or endoleaks related to incomplete stent apposition, which are difficult to predict and which restrain its use although it is less invasive than open surgery. Finite element simulations could help to predict and anticipate possible complications biomechanically induced, thus enhancing practitioners' stent-graft sizing and surgery planning, and giving indications on patient eligibility to endovascular repair. The purpose of this work is therefore to develop a new numerical methodology to predict stent-graft final deployed shapes after surgery. The simulation process was applied on three clinical cases, using preoperative scans to generate patient-specific vessel models. The marketed devices deployed during the surgery, consisting of a main body and one or more iliac limbs or extensions, were modeled and their deployment inside the corresponding patient aneurysm was simulated. The numerical results were compared to the actual deployed geometry of the stent-grafts after surgery that was extracted from postoperative scans. We observed relevant matching between simulated and actual deployed stent-graft geometries, especially for proximal and distal stents outside the aneurysm sac which are particularly important for practitioners. Stent locations along the vessel centerlines in the three simulations were always within a few millimeters to actual stents locations. This good agreement between numerical results and clinical cases makes finite element simulation very promising for preoperative planning of endovascular repair.

Keywords: Abdominal aortic aneurysm; Endovascular repair; Finite-element analysis; Patient-specific; Stent-graft.

PubMed Disclaimer

Similar articles

Cited by

Publication types